DOI QR코드

DOI QR Code

Improved Homologous Expression of the Acidic Lipase from Aspergillus niger

  • Zhu, Si-Yuan (Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Xu, Yan (Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Yu, Xiao-Wei (Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University)
  • Received : 2019.06.14
  • Accepted : 2019.11.19
  • Published : 2020.02.28

Abstract

In this study, the acidic lipase from Aspergillus niger (ANL) was homologously expressed in A. niger. The expression of ANL was significantly improved by the expression of the native ANL with the introns, the addition of the Kozak sequence and the optimization of the signal sequences. When the cDNA sequence of ANL fused with the glaA signal was expressed under the gpdA promoter in A. niger, no lipase activity could be detected. We then tried to improve the expression by using the full-length ANL gene containing three introns, and the lipase activity in the supernatant reached 75.80 U/ml, probably as a result of a more stable mRNA structure. The expression was further improved to 100.60 U/ml by introducing a Kozak sequence around the start codon due to a higher translation efficiency. Finally, the effects of three signal sequences including the cbhI signal, the ANL signal and the glaA signal on the lipase expression were evaluated. The transformant with the cbhI signal showed the highest lipase activity (314.67 U/ml), which was 1.90-fold and 3.13-fold higher than those with the ANL signal and the glaA signal, respectively. The acidic lipase was characterized and its highest activity was detected at pH 3.0 and a temperature of 45℃. These results provided promising strategies for the production of the acidic lipase from A. niger.

Keywords

References

  1. Schuster E, Dunn-Coleman N, Frisvad JC, van Dijck PWM. 2002. On the safety of Aspergillus niger - A review. Appl. Microbiol. Biotechnol. 59: 426-435. https://doi.org/10.1007/s00253-002-1032-6
  2. Cairns TC, Nai C, Meyer V. 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 5: 13. https://doi.org/10.1186/s40694-018-0054-5
  3. Steiniger C, Hoffmann S, Mainz A, Kaiser M, Voigt K, Meyer V, et al. 2017. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering. Chem. Sci. 8: 7834-7843. https://doi.org/10.1039/C7SC03093B
  4. Michael W, Cherry L, Victoria DC, Fox BP, Fox JA, Wong DL, et al. 2004. Characterization of humanized antibodies secreted by Aspergillus niger. Appl. Environ. Microbiol. 70: 2567-2576. https://doi.org/10.1128/AEM.70.5.2567-2576.2004
  5. Punt PJ. 2002. Filamentous fungi as cell factories for protein production. Trends Biotechnol. 20: 200-206. https://doi.org/10.1016/S0167-7799(02)01933-9
  6. Magana-Ortiz D, Fernandez F, Loske AM, Gomez-Lim MA. 2018. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens. Curr. Microbiol. 75: 40-48. https://doi.org/10.1007/s00284-017-1348-1
  7. Guo Y, Zheng P, Sun J. 2010. Aspergillus niger as a potential cellular factory: prior knowledge and key technology. Sheng Wu Gong Cheng Xue Bao 26: 1410-1418.
  8. Zoglowek M, Lubeck PS, Ahring BK, Lubeck M. 2015. Heterologous expression of cellobiohydrolases in filamentous fungi - an update on the current challenges, achievements and perspectives. Process Biochem. 50: 211-220. https://doi.org/10.1016/j.procbio.2014.12.018
  9. Krasevec N, van de Hondel C, Komel R. 2000. Expression of human lymphotoxin alpha in Aspergillus niger. Pflugers Arch. 440: R83-R85.
  10. Svetina M, Krasevec N, Gaberc-Porekar V, Komel R. 2000. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger. J. Biotechnol. 76: 245-251. https://doi.org/10.1016/S0168-1656(99)00191-1
  11. Roberts IN, Jeenes DJ, Mackenzie DA, Wilkinson AP, Sumner IG, Archer DB. 1992. Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155-161. https://doi.org/10.1016/0378-1119(92)90043-O
  12. Zhang H, Yan JN, Zhang H, Qi LT, Xu Y, Zhang YY, et al. 2018. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in A. niger. FEMS Microbiol. Lett. 1: 365.
  13. Liu F, Wang B, Ye Y, Pan L. 2017. High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expr. Purif. 144: 71-75. https://doi.org/10.1016/j.pep.2017.11.003
  14. Zhang H, Wang S, Zhang XX, Ji W, Song FP, Zhao Y, et al. 2016. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background. Microb. Cell Fact. 15: 11. https://doi.org/10.1186/s12934-015-0397-z
  15. Kamaruddin N, Storms R, Mahadi NM, Illias RM, Abu Bakar FD, Murad AMA. 2018. Reduction of extracellular proteases increased activity and stability of heterologous protein in Aspergillus niger. Arab. J. Sci. Eng. 43: 3327-3338. https://doi.org/10.1007/s13369-017-2914-3
  16. Zhang XF, Ai YH, Xu Y, Yu XW. 2019. High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro. Food Chem. 274: 305-313. https://doi.org/10.1016/j.foodchem.2018.09.020
  17. Saxena RK, Davidson WS, Sheoran A, Giri B. 2003. Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem. 39: 239-247. https://doi.org/10.1016/S0032-9592(03)00068-2
  18. Xia J - l, Huang B , Nie Z- y, Wang W. 2011. Production and characterization of alkaline extracellular lipase from newly isolated strain Aspergillus awamori HB-03. J. Cent. South Univ. 18: 1425. https://doi.org/10.1007/s11771-011-0857-5
  19. Shu ZY, Yan YJ, Yang JK, Xu L. 2007. Aspergillus niger lipase: gene cloning, over-expression in Escherichia coli and in vitro refolding. Biotechnol. Lett. 29: 1875-1879. https://doi.org/10.1007/s10529-007-9470-y
  20. Yang J, Yan X, Zhang Z, Jiang X, Yan Y. 2009. Two-step synthesis of the full length Aspergillus niger lipase gene lipA leads to high-level expression in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 25: 381-387.
  21. Kozak M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283-292. https://doi.org/10.1016/0092-8674(86)90762-2
  22. Ahangarzadeh S, Daneshvar MH, Rajabi-Memari H, Galehdari H, Alamisaied K. 2012. Cloning, transformation and expression of human interferon ${\alpha}2b$ Gene in tobacco plant (Nicotiana tabacum cv. xanthi). Jundishapur J. Nat. Pharm. Prod. 7: 111-116. https://doi.org/10.5812/jjnpp.3678
  23. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  24. Xu Y, Wang YH, Liu TQ, Zhang H, Zhang H, Li J. 2018. The GlaA signal peptide substantially increases the expression and secretion of $\alpha$-galactosidase in Aspergillus niger. Biotechnol. Lett. 40: 949-955. https://doi.org/10.1007/s10529-018-2540-5
  25. Li M, Zhou L, Liu M, Huang Y, Sun X, Lu F. 2013. Construction of an engineering strain producing high yields of alpha-transglucosidase via Agrobacterium tumefaciens-mediated transformation of Asperillus niger. Biosci. Biotechnol. Biochem. 77: 1860-1866. https://doi.org/10.1271/bbb.130281
  26. Madhavan A, Pandey A, Sukumaran RK. 2017. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresour. Technol. 245:1334-1342. https://doi.org/10.1016/j.biortech.2017.05.140
  27. Canseco-Perez MA, Castillo-Avila GM, Chi-Manzanero B, Islas-Flores I, Apolinar-Hernandez MM, Rivera-Munoz G, et al. 2018. Fungal screening on olive oil for extracellular triacylglycerol lipases: selection of a trichoderma harzianum strain and genome wide search for the genes. Genes 9(2): pii: E62.
  28. Jo BS, Choi SS. 2015. Introns: the functional benefits of introns in genomes. Genomics Inform. 13: 112-118. https://doi.org/10.5808/GI.2015.13.4.112
  29. Kurachi S, Hitomi Y, Furukawa M, Kurachi K. 1995. Role of intron I in expression of the human factor IX gene. J. Biol. Chem. 270: 5276-5281. https://doi.org/10.1074/jbc.270.10.5276
  30. Gniadkowski M, Hemmings-Mieszczak M, Klahre U, Liu HX, Filipowicz W. 1996. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucleic Acids Res. 24: 619-627. https://doi.org/10.1093/nar/24.4.619
  31. Jun X, Zhen GZ. 2003. Intron requirement for AFP gene expression in Trichoderma viride. Microbiology 149: 3093-3097. https://doi.org/10.1099/mic.0.26514-0
  32. Gonzalez-Hilarion S, Paulet D, Lee KT, Hon CC, Lechat P, Mogensen E, et al. 2016. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci. Rep. 6: 32252. https://doi.org/10.1038/srep32252
  33. Kozak M. 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 13-37. https://doi.org/10.1016/j.gene.2005.06.037
  34. Du M, Ye L, Liu J, Liu J, Yang L. 2008. Enhancement of GFP expression by Kozak sequence +4G in HEK293 cells. Sheng Wu Gong Cheng Xue Bao 24: 491-494.
  35. Olafsdottir G, Svansson V, Ingvarsson S, Marti E, Torsteinsdottir S. 2008. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence. Acta Vet. Scand. 50: 44. https://doi.org/10.1186/1751-0147-50-44
  36. Li J, Liang Q, Song WJ, Marchisio MA. 2017. Nucleotides upstream of the Kozak sequence strongly influence gene expression in the yeast S. cerevisiae. J. Biol. Eng. 11: 25. https://doi.org/10.1186/s13036-017-0068-1
  37. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV. 2002. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem. 38: 715-721. https://doi.org/10.1016/S0032-9592(02)00194-2
  38. Guang L. 2015. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512. Lipids 11: 1155-1163.
  39. dos Santos EAL, Lima AS, Soares CMF, Santana L. 2017. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix. Acta Sci.Technol. 39: 1-8. https://doi.org/10.4025/actascitechnol.v39i1.29887

Cited by

  1. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry vol.10, pp.9, 2020, https://doi.org/10.3390/catal10091032
  2. Genetic Manipulation and Transformation Methods for Aspergillus spp. vol.49, pp.2, 2020, https://doi.org/10.1080/12298093.2020.1838115
  3. Rational engineering of xylanase hyper-producing system in Trichoderma reesei for efficient biomass degradation vol.14, pp.1, 2020, https://doi.org/10.1186/s13068-021-01943-9
  4. Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification vol.19, pp.1, 2020, https://doi.org/10.1186/s43141-021-00155-w