DOI QR코드

DOI QR Code

Genomic analysis reveals selection signatures of the Wannan Black pig during domestication and breeding

  • Zhang, Wei (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Yang, Min (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Wang, Yuanlang (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Wu, Xudong (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Zhang, Xiaodong (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Ding, Yueyun (College of Animal Science and Technology, Anhui Agricultural University) ;
  • Yin, Zongjun (College of Animal Science and Technology, Anhui Agricultural University)
  • Received : 2019.04.07
  • Accepted : 2019.08.01
  • Published : 2020.05.01

Abstract

Objective: The Wannan Black pig is a typical Chinese indigenous, disease-resistant pig breed with high fertility, and a crude-feed tolerance that has been bred by artificial selection in the south of Anhui province for a long time. However, genome variation, genetic relationships with other pig breeds, and domestication, remain poorly understood. Here, we focus on elucidating the genetic characteristics of the Wannan Black pig and identifying selection signatures during domestication and breeding. Methods: We identified the whole-genome variation in the Wannan Black pig and performed population admixture analyses to determine genetic relationships with other domesticated pig breeds and wild boars. Then, we identified the selection signatures between the Wannan Black pig and Asian wild boars in 100-kb windows sliding in 10 kb steps by using two approaches: the fixation index (FST) and π ratios. Results: Resequencing the Wannan Black pig genome yielded 501.52 G of raw data. After calling single-nucleotide variants (SNVs) and insertions/deletions (InDels), we identified 21,316,754 SNVs and 5,067,206 InDels (2,898,582 inserts and 2,168,624 deletions). Additionally, we found genes associated with growth, immunity, and digestive functions. Conclusion: Our findings help in explaining the unique genetic and phenotypic characteristics of Wannan Black pigs, which in turn can be informative for future breeding programs of Wannan Black pigs.

Keywords

References

  1. Giuffra E, Kijas JMH, Amarger V, Carlborg O, Jeon JT, Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 2000; 154:1785-91. https://doi.org/10.1093/genetics/154.4.1785
  2. Veirano Frechou R. The state of the world's animal genetic resources for food and agriculture. Acta Paediatr 2007;81: 21-4.
  3. Enard D, Messer PW, Petrov D. Genome-wide signals of positive selection in human evolution. Genome Res 2014;24: 885-95. https://doi.org/10.1101/gr.164822.113
  4. Frantz LAF, Schraiber JG, Madsen O, et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 2015;47:1141-8. https://doi.org/10.1038/ng.3394
  5. Grossman SR, Shlyakhter I, Karlsson EK, et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010;327:883-6. https://doi.org/10. 1126/science.1183863 https://doi.org/10.1126/science.1183863
  6. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 1973;74:175-95. https://doi.org/10.1093/genetics/74.1.175
  7. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genet 1983;105:437-60. https://doi.org/10.1093/genetics/105.2.437
  8. Rubin C, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587-91. https://doi.org/10.1038/nature08832
  9. Salas A. The natural selection that shapes our genomes. Forensic Sci Int Genet 2019;39:57-60. https://doi.org/10.1016/j.fsigen.2018.12.003
  10. Zhao P, Yu Y, Feng W, et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. GigaScience 2018; 7:giy058. https://doi.org/10.1093/gigascience/giy058
  11. Rubin C, Megens H, Barrio AM, et al. Strong signatures of selection in the domestic pig genome. Proc Nat Acad Sci USA 2012;109:19529-36. https://doi.org/10.1073/pnas.1217149109
  12. Kim J, Hanotte O, Mwai OA, et al. The genome landscape of indigenous African cattle. Genome Biol 2017;18:34. https://doi.org/10.1186/s13059-017-1153-y
  13. Axelsson E, Ratnakumar A, Arendt M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013;495:360-4. https://doi.org/10.1038/ nature11837
  14. Alberto FJ, Boyer F, Orozco-terWengel P, et al. Convergent genomic signatures of domestication in sheep and goats. Nat Commun 2018;9:813. https://doi.org/10.1038/s41467-018-03206-y
  15. Zhang Z, Jia Y, Almeida P, et al. Whole-genome resequencing reveals signatures of selection and timing of duck domestication. GigaScience 2018;7:giy027. https://doi.org/10.1093/gigascience/giy027
  16. Li M, Tian S, Jin L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 2013;45:1431-8. https://doi.org/10.1038/ng.2811
  17. Zhang X, Huang L, Wu T, Feng Y, Ding Y, Yin ZJ. Polymorphism of the retinol-binding protein 4 gene (RBP4) and its association with carcass and meat quality traits in swine. Turk J Vet Anim Sci 2015;39:395-400. https://doi.org/10.3906/vet-1502-57
  18. Ding YY, Zhang W, Zhang MQ, et al. Functional and association studies of the cholesteryl ester transfer protein (CETP) gene in a Wannan Black pig model. Anim Genet 2015;46:702-6. https://doi.org/10.1111/age.12370
  19. Ding X, Zhang X, Yang Y, et al. Polymorphism, expression of natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) and its association with immune traits in pigs. Asian-Australas J Anim Sci 2014;27:1189-95. https://doi.org/10.5713/ajas.2014.14017
  20. Tian M, Zhang X, Ye PF, et al. MicroRNA-21 and microRNA-214 play important role in reproduction regulation during porcine estrous. Anim Sci J 2018;89:1398-405. https://doi.org/10.1111/asj.13087
  21. Patel RK, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One 2012;7:e30619. https://doi.org/10.1371/journal.pone.0030619
  22. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60. https://doi.org/10.1093/bioinformatics/btp324
  23. Li H, Handsaker B, Wysoker A, et al. The Sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078-99. https://doi.org/10.1093/bioinformatics/btp352
  24. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110
  25. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/ nar/gkq603
  26. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
  27. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 2009;10:639-50. https://doi.org/10.1038/nrg2611
  28. Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
  29. Lee TH, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 2014;15:162. https://doi.org/10.1186/1471-2164-15-162
  30. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969-73. https://doi.org/10.1093/molbev/mss075
  31. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009;84: 210-23. https://doi.org/10.1016/j.ajhg.2009.01.005
  32. Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol 2014;31:1929-36. https://doi.org/10.1093/molbev/msu136
  33. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
  34. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003;19:368-75. https://doi.org/10.1093/bioinformatics/btf877
  35. Davis TL, Walker JR, Campagna-Slater V, et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 2010;8:e1000439. https://doi.org/10.1371/journal.pbio.1000439
  36. Prins BP, Mead TJ, Brody JA, et al. Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biol 2018;19:87. https://doi.org/10.1186/s13059-018-1457-6
  37. Park AC, Phan N, Massoudi D, et al. Deficits in col5a2 expression result in novel skin and adipose abnormalities and predisposition to aortic aneurysms and dissections. Am J Pathol 2017;187:2300-11. https://doi.org/10.1016/j.ajpath.2017.06. 006
  38. Cheeseman IM, Hori T, Fukagawa T, Desai A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 2008;19:587-94. https://doi.org/10.1091/mbc.e07-10-1051
  39. Burbach BJ, Medeiros RB, Mueller KL, Shimizu Y. T-cell receptor signaling to integrins. Immunol Rev 2007;218:65-81. https://doi.org/10.1111/j.1600-065X.2007.00527.x
  40. Zhao B, Tumaneng K, Guan KL. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011;13:877-83. https://doi.org/10.1038/ncb2303
  41. Khanal RC, Nemere I. Regulation of intestinal calcium transport. Ann Rev Nutr 2008;28:179-96. https://doi.org/10.1146/annurev.nutr.010308.161202
  42. Aksanov O, Green P, Birk RZ. BBS4 directly affects proliferation and differentiation of adipocytes. Cell Mol Life Sci 2014; 71:3381-92. https://doi.org/10.1007/s00018-014-1571-x
  43. Wang Q, Ning H, Peng H, et al. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun 2017;8:867. https://doi.org/10.1038/s41467-017-00892-y
  44. Richard AC, Peters JE, Savinykh N, et al. Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genet 2018;14:e1007458. https://doi.org/10.1371/journal.pgen.1007458
  45. Koochakzadeh L, Hosseinverdi S, Hedayat M, et al. Study of SH2D1A gene mutation in paediatric patients with B-cell lymphoma. Allergol Immunopathol 2015;43:568-70. https://doi.org/10.1016/j.aller.2015.01.007
  46. Fischl H, Howe FS, Furger AM, Mellor J. Paf1 has distinct roles in transcription elongation and differential transcript fate. Mol Cell 2017;65:685-98. https://doi.org/10.1016/j.molcel. 2017.01.006
  47. Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett 2018;23:21. https://doi.org/10.1186/s11658-018-0085-1
  48. Glavey SV, Manier S, Natoni A, et al. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood 2014;124:1765-76. https://doi.org/10.1182/blood-2014- 03-560862
  49. Horiuchi N, Kumagai D, Matsumoto K, Inokuma H, Furuoka H, Kobayshi Y. Detection of the nonsense mutation of OPA3 gene in Holstein Friesian cattle with dilated cardiomyopathy in japan. J Vet Med Sci 2015;77:1281-3. https://doi.org/10.1292/jvms.15-0150
  50. Nishi A, Numata S, Tajima A, et al. De novo non-synonymous TBL1XR1 mutation alters Wnt signaling activity. Sci Rep 2017; 7:2887. https://doi.org/10.1038/s41598-017-02792-z

Cited by

  1. Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs vol.34, pp.12, 2020, https://doi.org/10.5713/ab.20.0679