DOI QR코드

DOI QR Code

Effects of Linear and Nonlinear Shear Deformation on Measurement for Stickiness of Cosmetics Using Rotational Rheometer

  • Received : 2020.06.12
  • Accepted : 2020.08.26
  • Published : 2020.12.30

Abstract

Cosmetics are representative complex fluids, and there have been many studies focusing on the correlation between the rheological properties and sensory attributes. Various instrumental measurements have been suggested to evaluate the sensory attributes, and one of the most common instruments is Texture Analyzer (TA). Although it is reported that the adhesiveness measured by TA is related to the stickiness of cosmetics, there exists reproducibility problem because measurements with TA are sensitive to application conditions. In this study, an instrumental protocol using rotational rheometer has been set up to measure the stickiness of cosmetics. This protocol consists of two steps. The first step is a preconditioning step, and various types of shear deformations are applied to the samples. The next step is the extensional flow and the axial force is measured. When the amplitude of the shear flow corresponded to the linear viscoelastic region, the axial force is the same as those without preconditioning. On the other hand, an axial force decreases as variation nonlinearity increases. It is because the effects of microstructure changes caused by nonlinear deformation affects the extensional flow. It is worth noting that a new protocol facilitates to evaluate the stickiness of cosmetics in a more systematic way.

Keywords

References

  1. L. S. Calixto, P. M. B. G. M. Campos, C. Picard, and G. Savary, Brazilian and French sensory perception of complex cosmetic formulations: a cross-cultural study, Int. J. Cosmet. Sci., 42(1), 60 (2020). https://doi.org/10.1111/ics.12586
  2. K. Timm, C. Myant, H. Nuguid, H. A. Spikes, and M. Grunze, Investigation of friction and perceived skin feel after application of suspensions of various cosmetic powders, Int. J. Cosmet. Sci., 34(5), 458 (2012). https://doi.org/10.1111/j.1468-2494.2012.00734.x
  3. K. Kusakari, M. Yoshida, F. Matsuzaki, T. Yanaki, H. Fukui, and M. Date, Evaluation of post-application rheological changes in cosmetics using a novel measuring device: relationship to sensory evaluation, J Cosmet Sci, 54(4), 321 (2003).
  4. K. Nakano, K. Kobayashi, K. Nakao, R. Tsuchiya, and Y. Nagai, Tribological method to objectify similarity of vague tactile sensations experienced during application of liquid cosmetic foundations, Tribol. Int., 63, 8 (2013). https://doi.org/10.1016/j.triboint.2012.02.011
  5. E. Gore, C. Picard, and G. Savary, Complementary approaches to understand the spreading behavior on skin of O/W emulsions containing different emollients, Colloids Surf. B, 193, 111132 (2020). https://doi.org/10.1016/j.colsurfb.2020.111132
  6. A. Tai, R. Bianchini, and J. Jachowicz, Texture analysis of cosmetic-pharmaceutical raw materials and formulations, Int. J. Cosmet. Sci., 36(4), 291 (2014). https://doi.org/10.1111/ics.12125
  7. M. Lukic, I. Jaksic, V. Krstonosic, N. Cekica, and S. Savic, A combined approach in characterization of an effective w/o hand cream: the influence of emollient on textural, sensorial and in vivo skin performance, Int. J. Cosmet. Sci., 34(2), 140 (2012). https://doi.org/10.1111/j.1468-2494.2011.00693.x
  8. F. Eudier, D. Hirel, M. Grisel, C. Picard, and G. Savary, Prediction of residual film perception of cosmetic products using an instrumental method and non-biological surfaces: the example of stickiness after skin application, Colloids Surf. B, 174, 181 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.062
  9. J. Lauger and H. Stettin, Differences between stress and strain control in the non-linear behavior of complex fluids, Rheol. Acta, 49, 909 (2010). https://doi.org/10.1007/s00397-010-0450-0
  10. K. Suzuki and T. Watanabe, Relationship between sensory assessment and rheological properties of cosmetic creams, J. Texture Stud., 2(4), 431 (1971). https://doi.org/10.1111/j.1745-4603.1971.tb00591.x
  11. A. Z. Nelson and R. H. Ewoldt, Design of yield-stress fluids: a rheology-to-structure inverse problem, Soft matter, 13, 7578 (2017). https://doi.org/10.1039/C7SM00758B
  12. G. Tafuro, A. Costantini, G. Baratto, L. Busata, and A. Semenzato, Rheological and textural characterization of acrylic polymer water dispersions for cosmetic use, Ind. Eng. Chem. Res., 58, 23549 (2019). https://doi.org/10.1021/acs.iecr.9b05319
  13. S. Ozkan, T. W. Gillece, L. Senak and D. J. Moore, Characterization of yield stress and slip behavior of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes, Int. J. Cosm. Sci., 34(2), 193 (2012). https://doi.org/10.1111/j.1468-2494.2012.00702.x
  14. A. Zosel, Adhesive failure and deformation behavior of polymers, J. Adhes., 30, 135 (1989). https://doi.org/10.1080/00218468908048202
  15. B. J. Dobraszczyk, The rheological basis of dough stickiness, J. Texture Stud., 28, 139 (1997). https://doi.org/10.1111/j.1745-4603.1997.tb00108.x
  16. Z. Yuan, J. Wang, X. Niu, J. Ma, X. Qin, L. Li, L. Shi, Y. Wu, and X. Guo, A study of the surface adhesion and rheology properties of cationic conditioning polymers, Ind. Eng. Chem. Res., 58(22), 9390 (2019). https://doi.org/10.1021/acs.iecr.9b00054
  17. B. Andreotti and J. H. Snoeijer, Statics and dynamics of soft wetting, Annu. Rev. Fluid Mech., 52, 285 (2020). https://doi.org/10.1146/annurev-fluid-010719-060147
  18. N. Bait, C. Derail, A. Benaboura, and B. Grassl, Rheology and adhesive properties versus structure of poly(acrylamide-co-hydroxyethyl methacrylate) hydrogels, Int. J. Adhes. Adhes., 96, 102449 (2020). https://doi.org/10.1016/j.ijadhadh.2019.102449
  19. H. M. Laun and J. Meissner, A sandwich-type creep rheometer for the measurement of rheological properties of polymer melts at low shear stress, Rheol. Acta, 19, 60 (1980). https://doi.org/10.1007/BF01523855
  20. W. Philippoff, Vibrational measurements with large amplitudes, Trans. Soc. Rheol., 10, 317 (1966). https://doi.org/10.1122/1.549049
  21. A. T. Tsai and D. S. Soong, Measurement of fast transient and steady state responses of viscoelastic fluids with sliding cylinder rheometer executing coaxial displacements, J. Rheol., 29, 1 (1985). https://doi.org/10.1122/1.549783
  22. T. B. Goudoulas and N. Germann, Concentration effect on the nonlinear measures of dense polyethylene oxide solutions under large amplitude oscillatory shear, J. Rheol., 62, 1299 (2018). https://doi.org/10.1122/1.5039614
  23. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, Validity of separable BKZ model for large amplitude oscillatory shear, J. Rheol., 37, 811 (1993). https://doi.org/10.1122/1.550396
  24. H. M. Laun, Prediction of elastic strains of polymer melts in shear and elongation, J. Rheol., 30, 459 (1986). https://doi.org/10.1122/1.549855
  25. F. J. Stadler, A. Leygue, H. Burhin, and C. Bailly, The potential of large amplitude oscillatory shear to gain an insight into the long-chain branching structure of polymers, Proceeding of the 235th ACS National Meeting, polymer preprints ACS, 49, 121, New Orleans, LA, USA (2008).
  26. J. E. Bae and K. S. Cho, Semianalytical methods for the determination of the nonlinear parameter of nonlinear viscoelastic constitutive equations from LAOS data, J. Rheol., 59, 525 (2015). https://doi.org/10.1122/1.4907976
  27. R. S. Jeyaseelan and A. J. Giacomin, Network theory for polymer solutions in large amplitude oscillatory shear, J. Nonnewton. Fluid Mech., 148, 24 (2008). https://doi.org/10.1016/j.jnnfm.2007.04.012
  28. R. H. Ewoldt and G. H. McKinley, On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves, Rheol. Acta, 49, 213 (2010). https://doi.org/10.1007/s00397-009-0408-2
  29. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, A geometrical interpretations of large amplitude oscillatory shear response, J. Rheol., 47, 747 (2005).
  30. S. A. Rogers and M. P. Lettinga, A sequence of physical processes determined and quantified in LAOS: application to theoretical nonlinear models, J. Rheol., 56, 1 (2012). https://doi.org/10.1122/1.3662962
  31. C. R. Lopez-Barron, N. J. Wagner, and L. Porcar, Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows, J. Rheol., 59, 793 (2015). https://doi.org/10.1122/1.4917542
  32. M. Wilhelm, D. Maring, and H. W. Spiess, Fourier-transform Rheology, Rheol. Acta, 37, 399 (1998). https://doi.org/10.1007/s003970050126
  33. M. Wilhelm, P. Reinheimer, and M. Ortseifer, High sensitivity Fourier-transform rheology, Rheol. Acta, 38, 349 (1999). https://doi.org/10.1007/s003970050185
  34. T. Neidhofer, M. Wilhelm, and B. Debbaut, Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions, J. Rheol., 47, 1351 (2003). https://doi.org/10.1122/1.1608954
  35. R. H. Ewoldt, A. E. Hosoi, and G. H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol., 52, 1427 (2008). https://doi.org/10.1122/1.2970095
  36. J. E. Bae, M. Lee, K. S. Cho, K. H. Seo, and D. G. Kang, Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear, Rheol. Acta, 52, 841 (2013). https://doi.org/10.1007/s00397-013-0720-8
  37. K. S. Cho, K. W. Song, and G. S. Chang, Scaling relations in nonlinear viscoelastic behavior of aqueous PEO solutions under large amplitude oscillatory shear flow, J. Rheol., 54, 27 (2010). https://doi.org/10.1122/1.3258278