DOI QR코드

DOI QR Code

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung (Department of Medical Nutrition, Kyung Hee University) ;
  • Lee, Dasom (Department of Medical Nutrition, Kyung Hee University) ;
  • Kim, Dakyung (Department of Medical Nutrition, Kyung Hee University) ;
  • Lee, Minhee (Department of Medical Nutrition, Kyung Hee University) ;
  • In, Gyo (Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation) ;
  • Han, Sung-Tai (Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation) ;
  • Kim, Sung Won (Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation) ;
  • Lee, Mi-Hyang (Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation) ;
  • Kim, Ok-Kyung (Division of Food and Nutrition and Research Institute for Human Ecology, Chonnam National University) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
  • Received : 2019.06.26
  • Accepted : 2019.12.10
  • Published : 2020.03.15

Abstract

Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Keywords

References

  1. Oh MJ, Kim HJ, Park EY, Ha NH, Song MG, Choi SH, Chun BG, Kim DH. The effect of Korean Red Ginseng extract on rosiglitazone-induced improvement of glucose regulation in diet-induced obese mice. J Ginseng Res 2017:52-9.
  2. Ahn J, Um MY, Lee H, Jung CH, Heo SH, Ha TY. Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice. Evid Based Complement Alternat Med 2013:934183.
  3. Kwon HO, Lee MH, Kim YJ, Kim E, Kim OK. Beneficial effects of Acanthopanax senticocus extract in type II diabetes animal model via down-regulation of advanded glycated hemoglobin and glycosylation end products. J Korean Soc Food Sci 2016;45(7):929-37. https://doi.org/10.3746/jkfn.2016.45.7.929
  4. Cordero-Herrera I, Martin MA, Bravo L, Goya L, Ramos S. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res 2013;57:974-85. https://doi.org/10.1002/mnfr.201200500
  5. Elieen LW, Han C, Birnbaum MJ. Role of Akt protein kinase B in metabolism. Trends in Endocrinol Metab 2002;13(10):444-51. https://doi.org/10.1016/S1043-2760(02)00662-8
  6. Shephered PR, Withers DJ, Siddle L. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 1998;333(3):471-90. https://doi.org/10.1042/bj3330471
  7. Nakae J, Kitamura T, silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phospahatase expression. J Clin Invest 2001;108:1359-67. https://doi.org/10.1172/JCI200112876
  8. Puigserver P, Rhee J, Donovan J, Walkey CJ, Toon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003;423:550-5. https://doi.org/10.1038/nature01667
  9. Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens 2011;20:278-84. https://doi.org/10.1097/MNH.0b013e3283451901
  10. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. An J Physiol Renal Physiol 2003;284:F1138-44.
  11. Yang HN, Son WS, Park HR, Lee SE, Park YS. Effect of Korean red ginseng treatment on the gene expression profile of diabetic rat retina. J Ginseng Res 2016;40:1-8. https://doi.org/10.1016/j.jgr.2015.03.003
  12. Yun TK, Zheng S, Choi SY, Cai SR, Lee YS, Liu XY, Cho KJ, Park KY. Non-organspecific preventive effect of long-term administration of Korean red ginseng extract on incidence of human cancers. J Med Food 2010;13(3):489-94. https://doi.org/10.1089/jmf.2009.1275
  13. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  14. Patel SB, Santani D, Patel V, Shah M. Anti-diabetic effects of ethanol extract of AMPK compensatory effects for ER stress-mediated beta-cell dysfunction during the progression of type-2 diabetes. Cell Signal 2013;25:2348-61. https://doi.org/10.1016/j.cellsig.2013.07.028
  15. Kim HY, Kim K. Protective effect of ginseng on cytokine-induced apoptosis in pancreatic beta-cells. J Agric Food Chem 2007;55:2816-23. https://doi.org/10.1021/jf062577r
  16. Lim KH, Cho JY, Kim B, Bae BS, Kim JH. Red ginseng (Panax ginseng) decreases isoproterenol-induced cardiac injury via antioxidant properties in porcine. J Med Food 2014;17:111-8. https://doi.org/10.1089/jmf.2013.2768
  17. Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis 2015;14:50. https://doi.org/10.1186/s12944-015-0051-0
  18. Nishina PM, Naggert JK, Verstuyft J, Paigen B. Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 1994;5:554-8.
  19. Lee SH, Min KH, Han JS, Lee DH, Park DB, Jung WK, Park PJ, Jeon BT, Kim SK, Jeon YJ. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol 2012;50:575-82. https://doi.org/10.1016/j.fct.2011.12.032
  20. Vuksan V, Sung MK, Sievenpiper JL, Stravro PM, Jenkins AL, Buono MD, Lee KS, Leiter LA, Nam KY, Arnason JT, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metabol Cardiovasc Dis 2008;18:46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  21. Bang HJ, Kwak JH, Ahn HY, Shin DY, Lee JH. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J Med Food 2014;17(1):128-34. https://doi.org/10.1089/jmf.2013.2889
  22. Zheng T, Shu G, Yang Z, Mo S, Zhao Y, Mei Z. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. In type 2 diabetic rats. J Ethnopharmacol 2012;139:814-21. https://doi.org/10.1016/j.jep.2011.12.025
  23. Nam KY, Ko SR, Choi KJ. Relationship of saponin and non-saponin for the quality of ginseng. J Ginseng Res 1998;22(4):274-83.
  24. Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: a review. Carbohydrate Polymers 2016;148:86-97. https://doi.org/10.1016/j.carbpol.2016.02.060
  25. Zou S, Zhang X, Yao W, Niu Y, Gao X. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Carbohydrate Polymers 2010;80(4):1161-7. https://doi.org/10.1016/j.carbpol.2010.01.038
  26. Zhang S, Li XZ. Inhibition of ${\alpha}$-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydrate Polymers 2015;115:38-43. https://doi.org/10.1016/j.carbpol.2014.08.059
  27. Jiang S, Du P, An L, Yuan G, Sun Z. Anti-diabetic effect of Coptis Chinensis polysaccharide in high-fat diet with STZ-induced diabetic mice. International Journal of Biological Macromolecules 2013;55:118-22. https://doi.org/10.1016/j.ijbiomac.2012.12.035
  28. Park HJ, Rhee MH, Park KM, Nam KY, Park KH. Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol 1995;49:157-62. https://doi.org/10.1016/0378-8741(95)01317-2
  29. Kurimoto H, Nishijo H, Uwano T, Yamaguchi H, Zhong YM, Kawanishi K, Ono T. Effects of nonsaponin fraction of red ginseng on learning deficits in aged rats. Physiol Behav 2004;82:345-55. https://doi.org/10.1016/j.physbeh.2004.04.001
  30. Sohn EH, Kim JH, Choi HS, Park HJ, Kim BO, Rhee DK, Pyo SN. Immunomodulatory effects of non-saponin red ginseng components on innate immune cells. J Ginseng Res 2008;32(1):67-72. https://doi.org/10.5142/JGR.2008.32.1.067
  31. Kim EH, Park JD, Pyo SN, Rhee DK. Effects of non-saponin red ginseng components on multi-drug resistance. J Ginseng Res 2007;31(2):74-8. https://doi.org/10.5142/JGR.2007.31.2.074
  32. Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS, Jeon YJ. Dieckol isolated from Echlonia cava inhibits ${\alpha}$-glucosidase and ${\alpha}$-amylase in vitro and alleviates postproandial hyperglycemia in streptozotocin-induced diabetic mice. Food and Chemical Toxicology 2010;48:2633-7. https://doi.org/10.1016/j.fct.2010.06.032
  33. Shan X, Liu X, Hao JJ, Cai C, Fan F, Dun Y, Zha X, Liu X, Li C, Yu G. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int J Biol Macromol 2016;82:249-55. https://doi.org/10.1016/j.ijbiomac.2015.11.036
  34. Kasabri V, Afifi FU, Hamdan I. In vitro and in vivo acute antihyperglycemic effects of of five selected indigenous plants from Jordan used in traditional medicine. J Ethnopharmacol 2011;133:888-96. https://doi.org/10.1016/j.jep.2010.11.025
  35. Wang Y, Yang Z, Wei X. Sugar compositions, ${\alpha}$-glucosidase inhibitory and aamylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int J Biol Macromol 2010;47:534-9. https://doi.org/10.1016/j.ijbiomac.2010.07.007
  36. Kumar S, Narwal S, Kumar V, Prakash O. ${\alpha}$-glucosidase inhibitors from plants: a natural approach to treat diabetes. Phcog Rev 2011;5(9):19-29. https://doi.org/10.4103/0973-7847.79096
  37. Hamid HA, Yusoff MM, Liu M, Karim MR. ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory constituents of Tinospora crispa: isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. J Funct Foods 2015;16:74-80. https://doi.org/10.1016/j.jff.2015.04.011
  38. Zuraini A, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, Hakim MN. In vitro anti-diabetic activities and chemical analusis of polypeptide-k and oil isolated from seeds of Momordica charantia (Bitter Gourd). Molecules 2012;17:9531-640.
  39. Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Letters 2005;579:1653-7. https://doi.org/10.1016/j.febslet.2004.12.099
  40. Manzano S, Williamson G. Plyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 2010;54:1773-80. https://doi.org/10.1002/mnfr.201000019
  41. Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 2000;48:5618-23. https://doi.org/10.1021/jf0006832
  42. Wang A, Clifford MN, Sharp P. Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem 2008;108:369-73. https://doi.org/10.1016/j.foodchem.2007.10.083
  43. Andrade-Cetto A, Vazquez RC. Gluconeogenesis inhibition and phytochemical composition of two Cercropia species. J Ethnopharmacol 2010;130:93-7. https://doi.org/10.1016/j.jep.2010.04.016
  44. Alberti KG, Zimmet PZ. New diagnostic criteria and classification of diabetesagain? Diabet Med 1998;7:535-6. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<535::AID-DIA670>3.0.CO;2-Q
  45. Zheng W, Welihinda A, Mechanic J, Ding H, Zhu L, Lu Y, Deng Z, Sheng Z, Lv B, Chen Y, et al. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mic and prolongs the survival of stroke-prone rats. Pharmacol Res 2011;63:284-93. https://doi.org/10.1016/j.phrs.2011.01.001
  46. Tan KCB, Shiu SWM, Wong Y, Tam X. Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab Res Rev 2011;27:488-92. https://doi.org/10.1002/dmrr.1188
  47. Jo R, Min JR, Jeong SH. Anti-diabetic effects of water extracts of Rehmannia glutinosa libosch root in 3T3-L1 adipocytes and C57BL/KsJ-db/db mice. J Korean Soc Food Sci Nutr 2018;47(10):957-65. https://doi.org/10.3746/jkfn.2018.47.10.957
  48. Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 2004;36:753-8. https://doi.org/10.1016/j.biocel.2003.10.002
  49. Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Jensen MD, Schwenk WF, Rizza RA. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic glucokinase activity. Diabetes 2001;50:1351-62. https://doi.org/10.2337/diabetes.50.6.1351
  50. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018;14(11):1483-96. https://doi.org/10.7150/ijbs.27173
  51. Yan F, Zhang J, Zhang L, Zheng X. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG cell. Food Funct 2016;7:425. https://doi.org/10.1039/C5FO00841G
  52. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World Journal of Diabetes 2010;1(3):68-75. https://doi.org/10.4239/wjd.v1.i3.68
  53. Padiya R, Chowdhury D, Borkar R, Srinivas R, Bhadra MP, Banerjee SK. Galic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLOS ONE 2014;9(5):e94228. https://doi.org/10.1371/journal.pone.0094228
  54. Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, Chen L, Li YH, Wang JI, Kang YM, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clinical Science 2015;129:839-50. https://doi.org/10.1042/CS20150009
  55. Granado-Serrano AB, Martin MA, Goya L, Bravo L, Ramos S. Time-course regulation of survival pathways by epicatechin on HepG2 cells. J Nutr 2010;103:168-79. https://doi.org/10.1017/S0007114509991747
  56. Martin MA, Granado-Serrano AB, Ramos S, Izquierdo Pulido M, Bravo L, Goya L. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J Nutr Biochem 2010;21:196-205. https://doi.org/10.1016/j.jnutbio.2008.10.009
  57. Borradaile NM, de Dreu LE, Huff MW. Inhibition of ne HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 2003;52:2554-61. https://doi.org/10.2337/diabetes.52.10.2554
  58. Cao H, Hininger-Favier I, Kelly MA, Benaraba R, Dawson HD, Coves S, Roussel AM, Anderson RA. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem 2007;55:6372-8. https://doi.org/10.1021/jf070695o
  59. Nordlie R, Bode AM, Foster JD. Recent advances in gepatic glucose-6-phosphate regulation and function. Proc Soc Exp Biol Med 1993;3:274-85. https://doi.org/10.3181/00379727-203-43600
  60. Mithieux G. New knowledge regarding glucose-6-phosphatase gene and proein and their roles in the regulation of glucose metabolism. Eur J Endocrinol 1997;136:137-45. https://doi.org/10.1530/eje.0.1360137
  61. Davies GF, Khandelwal RL, Wu L, Juurlink BH, Roesler WJ. Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a peroxisome proliferators-activated receptor-gamma (PPAR gamma)- independent, antioxidant-related mechanism. Biochem Pharmacol 2001;62:1071-9. https://doi.org/10.1016/S0006-2952(01)00764-X
  62. Kim HS, Noh JH, Hong SH, Hwang YC, Yang TY, Lee MS, Kim KW, Lee MK. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem Biophys Res Commun 2008;367:623-9. https://doi.org/10.1016/j.bbrc.2007.12.192
  63. Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 2005;123:1307-21. https://doi.org/10.1016/j.cell.2005.09.041
  64. Valera A, solanes G, Fernandez-Alvarez J, Pujol A, Ferrer J, Asins G, Gomis R, Bosch F. Expression of GLUT-2 antisense RNA in beta cells of transgenic mice leads to diabetes. J Biol Chem 1994;269:28543-6. https://doi.org/10.1016/S0021-9258(19)61937-X
  65. Zhang F, Xu X, Zhang Y, Zhou B, He Z, Zhai Q. Gene expression profile analysis of type 2 diabetic mouse liver. PLOS ONE 2013;8(3):e57766. https://doi.org/10.1371/journal.pone.0057766
  66. Davies SP, Sim AT, Hardie DG. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem 1990;187:183-90. https://doi.org/10.1111/j.1432-1033.1990.tb15293.x
  67. Zhang XD, Yan JW, Yan GR, Sun XY, Ji J, li YM, Hu YH, Wang HY. Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight gain, hyperlipidemia, and hepatic steatosis in db/db mice. Acta Pharmacol Sin 2010;31:1470-7. https://doi.org/10.1038/aps.2010.104

Cited by

  1. The Effect of a 2-Week Red Ginseng Supplementation on Food Efficiency and Energy Metabolism in Mice vol.12, pp.6, 2020, https://doi.org/10.3390/nu12061726
  2. Indian Gooseberry and Barley Sprout Mixture Inhibits Adipogenesis and Lipogenesis Activity in 3T3-L1 Adipocytes vol.10, pp.24, 2020, https://doi.org/10.3390/app10249078
  3. The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041158
  4. Gut Microbiome Prolongs an Inhibitory Effect of Korean Red Ginseng on High-Fat-Diet-Induced Mouse Obesity vol.13, pp.3, 2021, https://doi.org/10.3390/nu13030926