DOI QR코드

DOI QR Code

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

  • Choi, Woosung (Department of Energy Science, Sungkyunkwan University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Ji Man (Department of Chemistry, Sungkyunkwan University) ;
  • Choi, Jae-Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2019.09.04
  • Accepted : 2019.10.27
  • Published : 2020.02.28

Abstract

As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Keywords

References

  1. O. Heaviside, The Electriian., reprinted as Electrical Papers, 1886, 212.
  2. E. Warburg, Ann. Phys. Chem., 1899, 3, 493. https://doi.org/10.1002/andp.18993030302
  3. A.E. Thiessen, Gen. Radio Exp., 1933, 7, 7-9.
  4. D.C Grahame, Chem. Rev., 1947, 41(3), 441-501. https://doi.org/10.1021/cr60130a002
  5. V.D.D. MacDonald, Plenum Press. New York-London, 1977, 1, 358-359.
  6. D.E. Smith, H.H. Bauer, CRC Crit. Rev. Anal. Chem., 1971, 2(2), 247-343.
  7. C. Gabrielli, Tech. Rep. No 004, Solartron, Hampshire, UK., 1984, (3), 1-120.
  8. M.J. Ross, K.R. William, Impedance Spectroscopy: Emphasizing Solid Materials and Systems; John Wiley & Sons: John Wiley Sons New York, 1987.
  9. Y.H. Kim, Y.S. Kwon, M.Y. Shon, M.J. Moon, J. Electrochem. Sci. Technol., 2018, 9(1), 1-8. https://doi.org/10.5229/JECST.2018.9.1.1
  10. N.N. Hazani, Y. Mohd, S. Ahmad, I. Sheikh, M. Ghazali, Y. Farina, N.N. Dzulkifli, J. Electrochem. Sci. Technol., 2019, 10(1), 29-36. https://doi.org/10.5599/jese.717
  11. H.-B. Choe, H.-S. Lee, M.A. Ismail, M.W. Hussin, Int J Electrochem Sci., 2015, 10, 9775-9789.
  12. K. Pandey, S.T.A. Islam, T. Happe, F.A. Armstrong, F. A. Proc. Natl. Acad. Sci. U. S. A, 2017, 114(15), 3843-3848. https://doi.org/10.1073/pnas.1619961114
  13. A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos, J. Electroanal. Chem., 2015, 757, 216-224. https://doi.org/10.1016/j.jelechem.2015.09.033
  14. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv., 2015, 5, 46050-46058. https://doi.org/10.1039/C5RA02957K
  15. W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, J. Mater. Chem. A, 2014, 2, 9613. https://doi.org/10.1039/C4TA00414K
  16. E.K. Park, J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7(1), 33-40. https://doi.org/10.33961/JECST.2016.7.1.33
  17. A. Bertei, E. Ruiz-trejo, F. Tariq, V. Yufit, A. Atkinson, N.P. Brandon, Int. J. Hydrogen Energy, 2016, 41, 22381-22393. https://doi.org/10.1016/j.ijhydene.2016.09.100
  18. X. Zhang, W. Wu, Z. Zhao, B. Tu, D. Ou, D. Cui, M. Cheng, Catal. Sci. Technol., 2016, 6, 4945-4952. https://doi.org/10.1039/C5CY02232K
  19. X. Hu, S. Li, H. Peng, J. Power Sources, 2012, 198, 359-367. https://doi.org/10.1016/j.jpowsour.2011.10.013
  20. T. Momma, M. Matsunaga, D. Mukoyama, T. Osaka, J. Power Sources, 2012, 216, 304-307. https://doi.org/10.1016/j.jpowsour.2012.05.095
  21. A. Barai, K. Uddin, W.D. Widanage, A. McGordon, P. Jennings, Sci. Rep., 2018, 8(21).
  22. U. Krewer, F. Röder, E. Harinath, R.D. Braatz, B. Bedürftig, R. Findeisen, J. Electrochem. Soc., 2018, 165(16), A3656-A3673 https://doi.org/10.1149/2.1061814jes
  23. S. Rodrigues, N. Munichandraiah, A.K Shukla, J Solid State Electrochem., 1999, 3, 397-405. https://doi.org/10.1007/s100080050173
  24. S. Kochowski, K. Nitsch, Thin Solid Films, 2002, 415, 133-137. https://doi.org/10.1016/S0040-6090(02)00506-0
  25. S.P. Jing, J.G. Love, S.P.S. Badwal, Key Eng. Mater., 1997, 125-126, 81-132. https://doi.org/10.4028/www.scientific.net/KEM.125-126.81
  26. J.E.B. Randle, Discuss. Faraday Soc., 1947, 1, 11-19. https://doi.org/10.1039/df9470100011
  27. M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, J. Jamnik, Electrochem. Solid-State Lett., 2008, 11(10), A170-A174. https://doi.org/10.1149/1.2964220
  28. U. Westerhoff, K. Kurbach, F. Lienesch, M. Kurrat, Energy Technol., 2016, 4, 1620-1630. https://doi.org/10.1002/ente.201600154
  29. T. Momma, T. Yokoshima, H. Nara, Y. Gima, T. Osaka, Electrochim. Acta, 2014, 131, 195-201. https://doi.org/10.1016/j.electacta.2014.01.091
  30. O.S. Mendoza-Hernandez, H. Ishikawa, Y. Nishikawa, Y. Maruyama, Y. Sone, M. Umeda, Electrochim. Acta, 2014, 131, 168-173. https://doi.org/10.1016/j.electacta.2014.01.057
  31. D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczkaguth, D.U. Sauer, J. Power Sources, 2011, 196(12), 5349-5356. https://doi.org/10.1016/j.jpowsour.2010.07.071
  32. P. Gao, C. Zhang, G. Wen, J. Power Sources, 2015, 294, 67-74. https://doi.org/10.1016/j.jpowsour.2015.06.032
  33. B.T. Habte, F. Jiang, Solid State Ionics, 2018, 314, 81-91. https://doi.org/10.1016/j.ssi.2017.11.024
  34. H. Nara, D. Mukoyama, R. Shimizu, T. Momma, T. Osaka, J. Power Sources, 2019, 409, 139-147. https://doi.org/10.1016/j.jpowsour.2018.09.014
  35. D.W. Abarbanel, K.J. Nelson, J.R. Dahn, J. Electrochem. Soc., 2016, 163(3), A522-A529. https://doi.org/10.1149/2.0901603jes
  36. N.S. Zhai, M.W. Li, W.L. Wang, D.L Zhang, D.G. Xu, J. Phys. Conf. Ser, 2006, 48, 1157. https://doi.org/10.1088/1742-6596/48/1/215
  37. M.D. Murbach, D.T. Schwartz, J. Electrochem. Soc., 2018, 165(2), A297-A304. https://doi.org/10.1149/2.1021802jes
  38. A. Eddahech, O. Briat, J.-M Vinassa, J. Power Sources, 2014, 258, 218-227. https://doi.org/10.1016/j.jpowsour.2014.02.020
  39. S.F. Schuster, T. Bach, E. Fleder, J. Muller, M. Brand, G. Sextl, A. Jossen, J. Energy Storage, 2015, 1, 44-53. https://doi.org/10.1016/j.est.2015.05.003
  40. S.F. Schuster, M.J. Brand, C. Campestrini, M. Gleissenberger, A. Jossen, J. Power Sources, 2016, 305, 191-199. https://doi.org/10.1016/j.jpowsour.2015.11.096
  41. J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.-C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources, 2005, 147, 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  42. K.M. Shaju, F. Jiao, A. lie Debart, P.G. Bruce, Phys. Chem. Chem. Phys., 2007, 9, 1837-1842. https://doi.org/10.1039/B617519H
  43. K.-A. Kwon, H.-S. Lim, Y.-K. Sun, K.-D. Suh, J. Phys. Chem. C, 2014, 118, 2897-2907. https://doi.org/10.1021/jp5000057
  44. S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, Energy Environ. Sci., 2014, 7, 632. https://doi.org/10.1039/C3EE43319F
  45. D. Chen, H. Quan, J. Liang, L. Guo, Nanoscale, 2013, 5, 9684. https://doi.org/10.1039/c3nr03484d
  46. Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 2051-2058. https://doi.org/10.1021/am405142p
  47. S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 2006, 51(8-9), 1636-1640. https://doi.org/10.1016/j.electacta.2005.02.137
  48. M. Steinhauer, S. Risse, N. Wagner, K.A. Friedrich, Electrochim. Acta., 2017, 228, 652-658. https://doi.org/10.1016/j.electacta.2017.01.128
  49. J.S. Gnanaraj, R.W. Thompson, S.N. Iaconatti, J.F. Dicarlo, K.M. Abraham, Electrochem. Solid-State Lett., 2005, 8(2), A128-A132. https://doi.org/10.1149/1.1850390
  50. T.S. Sahu, S. Mitra, Sci. Rep., 2015, 5, 12571. https://doi.org/10.1038/srep12571
  51. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater, 2018, 8, 1701788. https://doi.org/10.1002/aenm.201701788
  52. S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta, 2004, 49(7), 1057-1061. https://doi.org/10.1016/j.electacta.2003.10.016
  53. N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, Y. Ukyo, J. Electrochem. Soc., 2012, 159(7), A1034-A1039. https://doi.org/10.1149/2.057207jes
  54. N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C, 2015, 119(9), 4612-4619. https://doi.org/10.1021/jp512564f
  55. C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc., 1980, 127(2), 343-350. https://doi.org/10.1149/1.2129668
  56. H. Xia, L, Lu, G. Ceder, J. Power Sources, 2006, 159, 1422-1427. https://doi.org/10.1016/j.jpowsour.2005.12.012
  57. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390. https://doi.org/10.1016/j.electacta.2009.11.096
  58. J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, Solid State Ionics, 2008, 179(9-10), 362-370. https://doi.org/10.1016/j.ssi.2008.02.051
  59. S.B. Tang, M.O. Lai, L. Lu, J. Alloys Compd., 2008, 449(1-2), 300-303. https://doi.org/10.1016/j.jallcom.2005.12.131
  60. H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources, 2006, 159(1), 717-720. https://doi.org/10.1016/j.jpowsour.2005.10.098
  61. J. Xie, T. Tanaka, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources, 2008, 180(1), 576-581. https://doi.org/10.1016/j.jpowsour.2008.02.049
  62. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, 55(7), 2384-2390. https://doi.org/10.1016/j.electacta.2009.11.096
  63. N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, I. Lieberwirth, Solid State Ionics, 2009, 180(1-2), 222-225. https://doi.org/10.1016/j.ssi.2008.12.015

Cited by

  1. Effect of the interfacial protective layer on the NaFe0.5Ni0.5O2 cathode for rechargeable sodium-ion batteries vol.8, pp.28, 2020, https://doi.org/10.1039/d0ta02837a
  2. Conversion of a Constant Phase Element to an Equivalent Capacitor vol.11, pp.3, 2020, https://doi.org/10.33961/jecst.2020.00815
  3. Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties vol.117, pp.12, 2020, https://doi.org/10.1063/5.0016456
  4. Energy Storage and CO2 Reduction Performances of Co/Co2C/C Prepared by an Anaerobic Ethanol Oxidation Reaction Using Sacrificial SnO2 vol.10, pp.10, 2020, https://doi.org/10.3390/catal10101116
  5. 3D Interdigitated Vertically Aligned Carbon Nanotube Electrodes for Electrochemical Impedimetric Biosensing vol.3, pp.10, 2020, https://doi.org/10.1021/acsanm.0c02121
  6. Quantifying the Dependence of Battery Rate Performance on Electrode Thickness vol.3, pp.10, 2020, https://doi.org/10.1021/acsaem.0c01865
  7. A composite cathode material encapsulated by amorphous garnet-type solid electrolyte and self-assembled La2(Ni0.5Li0.5)O4 nanoparticles for all-solid-state vol.8, pp.43, 2020, https://doi.org/10.1039/d0ta07347d
  8. Ice-interface assisted large-scale preparation of polypyrrole/graphene oxide films for all-solid-state supercapacitors vol.10, pp.68, 2020, https://doi.org/10.1039/d0ra07361j
  9. Phosphorus-doped CoS2 nanoparticles with greatly enhanced electrocatalytic performance as Pt-free catalyst for hydrogen evolution reaction in acidic electrolyte vol.26, pp.12, 2020, https://doi.org/10.1007/s11581-020-03775-3
  10. Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors vol.162, 2020, https://doi.org/10.1016/j.renene.2020.09.118
  11. Estimation of Battery Separator Area, Cell Thickness and Diffusion Coefficient Based on Non-Ideal Liquid-Phase Diffusion Modeling vol.13, pp.23, 2020, https://doi.org/10.3390/en13236238
  12. Synthesis and Electrochemical Performance Analysis of LiNiO2 Cathode Material Using Taylor-Couette Flow-Type Co-Precipitation Method vol.168, pp.1, 2020, https://doi.org/10.1149/1945-7111/abd91a
  13. Electrochemical Properties and Ex Situ Study of Sodium Intercalation Cathode P2/P3-NaNi1/3Mn1/3Co1/3O2 vol.2021, 2020, https://doi.org/10.1155/2021/9492571
  14. Analysis of the Charging Current in Cyclic Voltammetry and Supercapacitor’s Galvanostatic Charging Profile Based on a Constant-Phase Element vol.6, pp.1, 2020, https://doi.org/10.1021/acsomega.0c04702
  15. Development of ESAT-6 Based Immunosensor for the Detection of Mycobacterium tuberculosis vol.12, 2020, https://doi.org/10.3389/fimmu.2021.653853
  16. Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions vol.14, pp.2, 2020, https://doi.org/10.3390/en14020350
  17. Single and ternary nanocomposite electrodes of Mn3O4/TiO2/rGO for supercapacitors vol.25, pp.3, 2021, https://doi.org/10.1007/s10008-020-04837-2
  18. Recursive multilayer perceptron-based data-driven identification for a parameterized polarization model of rechargeable Li-ion battery vol.101, 2021, https://doi.org/10.1016/j.asoc.2020.107073
  19. Uniquely structured iron hydroxide-carbon nanospheres with yolk-shell and hollow structures and their excellent lithium-ion storage performances vol.542, 2020, https://doi.org/10.1016/j.apsusc.2020.148637
  20. High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries vol.14, pp.8, 2020, https://doi.org/10.3390/ma14082053
  21. Performance of Commercial Li-Ion Cells for Future NASA Missions and Aerospace Applications vol.168, pp.4, 2021, https://doi.org/10.1149/1945-7111/abf05f
  22. Effect of Residual Trace Amounts of Fe and Al in Li[Ni1/3Mn1/3Co1/3]O2 Cathode Active Material for the Sustainable Recycling of Lithium-Ion Batteries vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092464
  23. Electrochemical detection of choline at f-MWCNT/Fe3O4 nanocomposite modified glassy carbon electrode vol.8, pp.5, 2020, https://doi.org/10.1088/2053-1591/abf713
  24. Self-Templated Formation of Fluffy Graphene-Wrapped Ni5P4 Hollow Spheres for Li-Ion Battery Anodes with High Cycling Stability vol.13, pp.20, 2020, https://doi.org/10.1021/acsami.1c03696
  25. Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries: Theory, Methods and Future Outlook vol.8, pp.11, 2020, https://doi.org/10.1002/celc.202100108
  26. Review on physical impedance models in modern battery research vol.23, pp.23, 2020, https://doi.org/10.1039/d1cp00673h
  27. A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack vol.26, pp.3, 2020, https://doi.org/10.6113/tkpe.2021.26.3.192
  28. Understanding the Role of Separator and Electrolyte Compatibility on Lithium Metal Anode Performance Using Ionic Liquid-Based Electrolytes vol.4, pp.6, 2020, https://doi.org/10.1021/acsaem.1c01114
  29. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors vol.21, pp.13, 2020, https://doi.org/10.3390/s21134300
  30. Discrete-time modeling of Li-ion batteries with electrochemical overpotentials including diffusion vol.500, 2020, https://doi.org/10.1016/j.jpowsour.2021.229991
  31. Electrochemical Impedance Spectroscopy Study of Surface Film Formation on Lithium Anodes and the Role of Chain Termination on Poly(Ethylene Oxide) Electrolytes vol.4, pp.7, 2020, https://doi.org/10.1021/acsaem.1c00932
  32. Transient Rechargeable Battery with a High Lithium Transport Number Cellulosic Separator vol.31, pp.33, 2021, https://doi.org/10.1002/adfm.202101827
  33. Insights in the Ionic Conduction inside Nanoporous Metal-Organic Frameworks by Using an Appropriate Equivalent Circuit vol.14, pp.16, 2020, https://doi.org/10.3390/ma14164352
  34. Utilizing the Intrinsic Thermal Instability of Swedenborgite Structured YBaCo4O7+δ as an Opportunity for Material Engineering in Lithium-Ion Batteries by Er and Ga Co-Doping Processes vol.14, pp.16, 2020, https://doi.org/10.3390/ma14164565
  35. Rechargeable Lithium-Ion Battery Based on a Cathode of Copper Hexacyanoferrate vol.168, pp.8, 2020, https://doi.org/10.1149/1945-7111/ac1a53
  36. Effects of anionic substitution in molybdenum oxysulfide supported on reduced graphene oxide sheets for the hydrogen evolution reaction and supercapacitor application vol.5, pp.15, 2020, https://doi.org/10.1039/d1se00371b
  37. Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries vol.38, pp.9, 2021, https://doi.org/10.1007/s11814-021-0813-5
  38. Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries vol.40, 2020, https://doi.org/10.1016/j.ensm.2021.05.031
  39. An ASIC-Based Miniaturized System for Online Multi-Measurand Monitoring of Lithium-Ion Batteries vol.7, pp.3, 2021, https://doi.org/10.3390/batteries7030045
  40. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery vol.15, pp.9, 2020, https://doi.org/10.1021/acsnano.1c04240
  41. Toward Simultaneous Achievement of Outstanding Durability and Photoelectrochemical Reaction in Cu 2 O Photocathodes via Electrochemically Designed Resistive Switching vol.11, pp.39, 2020, https://doi.org/10.1002/aenm.202101905
  42. Relevance of the Catholyte Mixing Method for Solid‐State Composite Cathodes vol.9, pp.10, 2021, https://doi.org/10.1002/ente.202100479
  43. Bamboo-Based Mesoporous Activated Carbon for High-Power-Density Electric Double-Layer Capacitors vol.11, pp.10, 2021, https://doi.org/10.3390/nano11102750
  44. Memristive Equivalent Circuit Model for Battery vol.13, pp.20, 2020, https://doi.org/10.3390/su132011204
  45. A Study on the Selection of Failure Factors for Transient State Lithium-Ion Batteries based on Electrochemical Impedance Spectroscopy vol.38, pp.10, 2020, https://doi.org/10.7736/jkspe.021.040
  46. Defect-Engineered β-MnO2−δ Precursors Control the Structure-Property Relationships in High-Voltage Spinel LiMn1.5Ni0.5O4−δ vol.6, pp.39, 2020, https://doi.org/10.1021/acsomega.1c03656
  47. Calendar degradation of Li-ion batteries under high storage temperature based on electrochemical impedance spectroscopy vol.126, 2021, https://doi.org/10.1016/j.microrel.2021.114316
  48. Electrophysical Properties of the System PEG 1500-LiTFSI vol.57, pp.11, 2020, https://doi.org/10.1134/s1023193521110045
  49. Electrochemical Performance of Na3V2(PO4)2F3 Electrode Material in a Symmetric Cell vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222112045
  50. Electrochemical Performance of Thick-Film Li(Ni0.6Mn0.2Co0.2)O2 Cathode with Hierarchic Structures and Laser Ablation vol.11, pp.11, 2021, https://doi.org/10.3390/nano11112962
  51. Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries vol.424, 2021, https://doi.org/10.1016/j.cej.2021.130524
  52. Temperature dependence of impedance spectrum of charge-transfer processes in lithium-ion batteries with nickel-manganese-cobalt cathode and graphite anode vol.44, pp.no.pb, 2021, https://doi.org/10.1016/j.est.2021.103390
  53. High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-92671-5
  54. Influence of Surface Composition of AgSn Films on the Selectivity and Electrokinetics of CO2 Reduction in the Presence of Protic Organic [DBU-H]+ Cations vol.4, pp.12, 2020, https://doi.org/10.1021/acsaem.1c02233
  55. High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO vol.128, pp.1, 2020, https://doi.org/10.1007/s00339-021-05128-x
  56. Next-generation Li-ion capacitor with high energy and high power by limiting alloying-intercalation process using SnO2@Graphite composite as battery type electrode vol.230, 2020, https://doi.org/10.1016/j.compositesb.2021.109487
  57. Manipulating cobalt oxide on N-doped aligned electrospun carbon nanofibers towards instant electrochemical detection of dopamine secreted by living cells vol.577, 2020, https://doi.org/10.1016/j.apsusc.2021.151912
  58. Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries vol.66, 2020, https://doi.org/10.1016/j.jechem.2021.08.017