DOI QR코드

DOI QR Code

Irreversibly Adsorbed Tri-metallic PtBiPd/C Electrocatalyst for the Efficient Formic Acid Oxidation Reaction

  • Sui, Lijun (School of Chemical Engineering, University of Ulsan) ;
  • An, Wei (College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science) ;
  • Rhee, Choong Kyun (Department of Chemistry, Chungnam National University) ;
  • Hur, Seung Hyun (School of Chemical Engineering, University of Ulsan)
  • Received : 2019.09.15
  • Accepted : 2019.09.25
  • Published : 2020.02.28

Abstract

The PtBi/C and PtBiPd/C electrocatalysts were synthesized via the irreversible adsorption of Pd and Bi ions precursors on commercial Pt/C catalysts. XRD and XPS revealed the formation of an alloy structure among Pt, Bi, and Pd atoms. The current of direct formic acid oxidation (Id) increased ~ 8 and 16 times for the PtBi/C and PtBiPd/C catalysts, respectively, than that of commercial Pt/C because of the electronic, geometric, and third body effects. In addition, the increased ratio between the current of direct formic acid oxidation (Id) and the current of indirect formic acid oxidation (Iind) for the PtBi/C and PtBiPd/C catalysts suggest that the dehydrogenation pathway is dominant with less CO formation on these catalysts.

Keywords

References

  1. C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A.Wieckowski and T. Barnard, J. Power Sources 2002, 111, 83-89. https://doi.org/10.1016/S0378-7753(02)00271-9
  2. B. C. Ong, S. K. Kamarudin and S. Basri, Int. J. Hydrogen Energy 2017, 42, 10142-10157. https://doi.org/10.1016/j.ijhydene.2017.01.117
  3. M. Grasemann and G. Laurenczy, Energy Environ. Sci. 2012, 5, 8171-8181. https://doi.org/10.1039/c2ee21928j
  4. P. Hong, F. Luo, S. Liao and J. Zeng, Int. J. Hydrogen Energy 2011, 36, 8518-8524. https://doi.org/10.1016/j.ijhydene.2011.04.081
  5. K. Jiang, H. X. Zhang, S. Zou and W. B. Cai, PCCP 2014, 16, 20360-20376. https://doi.org/10.1039/C4CP03151B
  6. W. Gao, J. A. Keith, J. Anton and T. Jacob, JACS 2010, 132, 18377-18385. https://doi.org/10.1021/ja1083317
  7. E. Herrero and J. M. Feliu, Curr. Opin. Electrochem. 2018, 9, 145-150. https://doi.org/10.1016/j.coelec.2018.03.010
  8. J. K. Yoo, M. Choi, S. Yang, B. Shong, H.-S. Chung, Y. Sohn and C. K. Rhee, Electrochim. Acta 2018, 273, 307-317. https://doi.org/10.1016/j.electacta.2018.04.071
  9. W. Chen and S. Chen, J. Mater. Chem. A 2011, 21, 9169-9178. https://doi.org/10.1039/c1jm00077b
  10. E. N. El Sawy and P. G. Pickup, Electrocatalysis 2016, 7, 477-448. https://doi.org/10.1007/s12678-016-0328-8
  11. M. Choi, C.-Y. Ahn, H. Lee, J. K. Kim, S.-H. Oh, W. Hwang, S. Yang, J. Kim, O.-H. Kim, I. Choi, Y.-E. Sung, Y.-H. Cho, C. K. Rhee and W. Shin, Appl. Catal., B 2019, 253, 187-195. https://doi.org/10.1016/j.apcatb.2019.04.059
  12. J. D. Lovic, S. I. Stevanovic, D. V. Tripkovic, A. V. Tripkovic, R. M. Stevanovic, V. M. Jovanovic and K. D. Popovic, J. Solid State Electrochem. 2015, 19, 2223-2233. https://doi.org/10.1007/s10008-015-2841-8
  13. X. Yuan, X. Jiang, M. Cao, L. Chen, K. Nie, Y. Zhang, Y. Xu, X. Sun, Y. Li and Q. Zhang, Nano Res. 2019, 12, 429-436. https://doi.org/10.1007/s12274-018-2234-2
  14. J. V. Perales-Rondon, A. Ferre-Vilaplana, J. M. Feliu and E. Herrero, JACS 2014, 136, 13110-13113. https://doi.org/10.1021/ja505943h
  15. D. R. Blasini, D. Rochefort, E. Fachini, L. R. Alden, F. J. DiSalvo, C. R. Cabrera and H. D. Abruna, Surf. Sci. 2006, 600, 2670-2680. https://doi.org/10.1016/j.susc.2006.04.014
  16. C. Li, H. Wang, Y. Li, H. Yu, S. Yin, H. Xue, X. Li, Y. Xu and L. Wang, J. Nanotechnol. 2018, 29, 11762-117625.
  17. M. A. Ud Din, F. Saleem, B. Ni, Y. Yong and X. Wang, Adv. Mater. 2017, 1604994, 1-8.
  18. J. S. Yoo, H. T. Kim, H.-I. Joh, H. Kim and S. H. Moon, Int. J. Hydrogen Energy 2011, 36, 1930-1938. https://doi.org/10.1016/j.ijhydene.2010.11.061
  19. R. W. Atkinson, S. St. John, O. Dyck, K. A. Unocic, R. R. Unocic, C. S. Burke, J. W. Cisco, C. A. Rice, T. A. Zawodzinski and A. B. Papandrew, A. B., ACS Catal. 2015, 5, 5154-5163. https://doi.org/10.1021/acscatal.5b01239
  20. H. Xu, B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Y. Du, P. Yang, S. Jiang and S. Song, Appl. Surf. Sci. 2017, 416, 191-199. https://doi.org/10.1016/j.apsusc.2017.04.160
  21. H.-X. Zhang, C. Wang, J.-Y. Wang, J.-J. Zhai and W.-B. Cai, J. Phys. Chem. C 2010, 114, 6446-6451. https://doi.org/10.1021/jp100835b
  22. B. Gralec and A. Lewera, Appl. Catal., B 2016, 192, 304-310. https://doi.org/10.1016/j.apcatb.2016.03.073
  23. H. Liao, J. Zhu and Y. Hou, Nanoscale 2014, 6, 1049-1055. https://doi.org/10.1039/C3NR05590F
  24. Y. Suo, Int. J. Electrochem. Sci. 2017, 12, 3561-3575. https://doi.org/10.20964/2017.05.21
  25. J.-N. Zheng, J.-J. Lv, S.-S. Li, M.-W. Xue, A.-J. Wang and J.-J. Feng, JACS 2014, 2, 3445-3451.
  26. A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau and P. B. Atanassov, JACS 2014, 136, 3937-3945. https://doi.org/10.1021/ja412429f
  27. P. Kiatkittikul, J. Yamaguchi, T. Nohira and R. Hagiwara, Electrochemistry 2016, 84, 766-768. https://doi.org/10.5796/electrochemistry.84.766
  28. F. Alardin, P. Ruiz, B. Delmon and M. Devillers, Appl. Catal., A 2001, 215, 125-136. https://doi.org/10.1016/S0926-860X(01)00521-X
  29. M. Besson, F. Lahmer, P. Gallezot, P. Fuertes and G. Fleche, J. Catal. 1995, 152, 116-121. https://doi.org/10.1006/jcat.1995.1065

Cited by

  1. Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction vol.12, pp.1, 2021, https://doi.org/10.33961/jecst.2020.00892
  2. Pt Deposits on Bi-Modified Pt Electrodes of Nanoparticle and Disk: A Contrasting Behavior of Formic Acid Oxidation vol.12, pp.3, 2021, https://doi.org/10.33961/jecst.2021.00178
  3. Surface engineering of nanotubular ferric oxyhydroxide “goethite” on platinum anodes for durable formic acid fuel cells vol.47, pp.1, 2022, https://doi.org/10.1016/j.ijhydene.2021.10.037