DOI QR코드

DOI QR Code

쌀가루로부터 이소말토올리고당 제조를 위한 효소반응 최적 조건

Optimum Conditions of Enzymatic Reactions for Production of Isomaltooligosaccharides from Rice Flour

  • Park, Ji-in (Department of Food Science and Technology, Pukyoung National University) ;
  • Shin, Jiyoung (Department of Food Science and Technology, Pukyoung National University) ;
  • Yang, Ji-young (Department of Food Science and Technology, Pukyoung National University)
  • 투고 : 2019.12.20
  • 심사 : 2020.02.07
  • 발행 : 2020.02.28

초록

쌀 소비 촉진과 쌀가공품의 다양화를 위해 쌀가루를 이용한 이소말토올리고당 제조에 대해 연구하였다. 최적 반응 조건을 확립하기 위해서 상업용 효소인 Termamyl 2X, Maltogenase L, Promozyme D2, Fungamyl 800L, Trnasglucosidase L을 사용하였고, 당류는 HPLC-CAD를 이용하여 말토올리고당과 이소말토올리고당을 동시분석하여 제조 조건별로 당의 구성 및 함량을 확인하였다. 액화반응의 최적화 조건을 탐색하기 위해 효소의 농도(0.025%, 0.05%, 0.075%, 0.1%)와 시간(1 h, 2 h)에 변화를 주어 반응시켰으며, 가수분해 정도를 확인하기 위해 액화액의 환원당 함량을 측정하였다. 그 결과 Termamyl 2X를 0.075% 첨가하여 2시간 동안 반응하였을 때 환원당 함량이 138.26 g/L로 가장 높았다. 당화·전이반응의 최적화 조건을 확인하기 위해 효소의 종류, 효소농도, 효소반응시간을 달리하여 이소말토올리고당을 제조하였다. Maltogenase L, Promozyme D2, Transglucosidase L을 동시에 첨가하여 반응시켰을 때 isomaltose와 panose를 많이 생산하면서 총 이소말토올리고당의 함량이 가장 높게 나타났다. 그리고 효소의 첨가량을 결정하기 위해 각각 농도에 변화를 주어 시간별로 당 함량을 검토하였다. 그 결과, Maltogenase L은 0.0015%, Promozyme D2는 0.05-0.1%, Transglucosidase L은 0.1%를 첨가하였을 때, glucose의 함량은 감소되고 중합도가 높은 이소말토올리고당의 함량은 증가하는 효과가 있었다. 최적 효소반응시간 결정을 위해 6시간마다 생성물의 변화를 관찰한 결과, 36시간에 총 이소말토올리고당이 75.36 g/L로 가장 높은 것으으로 확인되었다. 최적 조건으로 제조된 이소말토올리고당은 18 brix였고, isomaltose 35.11 g/L, panose 11.97 g/L, isomaltotriose 19.95 g/L, isomaltotetraose 7.46 g/L, isomaltopentaose 1.05 g/L 이 생성되었으며, 총당 중 이소말토올리고당의 비율은 56.37%였다.

This study investigated the optimal conditions of enzymatic reaction for production of isomaltooligosaccharides (IMO) using rice flour. To manufacture IMO, commercial enzymes (Termamyl 2X, Maltogenase L, Promozyme D2, Fungamyl 800L and Transglucosidase L) were used. The sugar composition and amount of IMO were examined by HPLC with charged aerosol detector (HPLC-CAD) in each manufacturing process. Liquefaction reaction was performed according to different Termamyl 2X concentrations (0.025%, 0.05%, 0.075%, 0.1%) and reaction times (1 h, 2 h). As a result, the reducing sugar content was the highest at 138.26 g/L when 0.075% Termamyl 2X was added for 2 hours. In order to optimize simultaneous saccharification and transglucosylation, experiments on enzyme selection, enzyme concentration and enzyme reaction time were conducted. Reaction with 0.0015% Maltogenase L, 0.05-0.1% Promozyme D2 and 0.1% Tansglucosidase L was effective in decreasing glucose content and increasing content of IMO with a high degree of polymerization. A change in sugar content was observed every 6 hours to determine the optimal reaction time, and the highest IMO was produced after 36 hours of reaction (75.36 g/L). The IMO prepared under optimal conditions showed isomaltose, 35.11 g/L; panose, 11.97 g/L; isomaltotriose, 19.95 g/L; isomaltotetraose, 7.46 g/L; isomaltopentaose, 1.05 g/L at 18 brix and the ratio of IMO in the total sugar was 56.37%.

키워드

참고문헌

  1. KOSTAT, (2019, October 21). Grain consumption investigation 2018-homes.businesses sector [Document file], Retrieved from http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=372958
  2. Lee, H. S., Auh, J. H., Yoon, H. G., Kim, M. J., Park, J. H., Hong, S. S., Kang, M. H., Kim, T. J., Moon, T. W., Kim, J. W. and Park, K. H., Cooperative action of $\alpha$-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J Agric Food Chem, 50, 2812-2817 (2002). https://doi.org/10.1021/jf011529y
  3. Sheng, G. E., Dong-lian, C. A. I. and Li-li, W. A. N., Determination of glycemic index of xylitol and isooligosaccharide. Chinese J. Clin. Nutri., 14, 235-237 (2006).
  4. Qiang, X., Yonglie, C., and Qianbing, W., Health benefit application of functional oligosaccharides. Carbohyd Polym, 77, 435-441 (2009). https://doi.org/10.1016/j.carbpol.2009.03.016
  5. Yen, C. H., Tseng, Y. H., Kuo, Y. W., Lee, M. C., and Chen, H. L., Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people-a placebo- controlled, diet-controlled trial. Nutrition, 27, 445-450 (2011). https://doi.org/10.1016/j.nut.2010.05.012
  6. Gourineni, V., Stewart, L. M., Icoz, D. and Zimmer, P. J., Gastrointestinal tolerance and glycemic response of isomaltooligosaccharides in healthy adults. Nutrients, 10, 301 (2018). https://doi.org/10.3390/nu10030301
  7. Basu, A., Mutturi, S. and Prapulla, S. G., Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainablesources. Process Biochem, 51, 1464-1471 (2016). https://doi.org/10.1016/j.procbio.2016.06.008
  8. Lee, E. B., Kim, H. Y., Han, G. J. and Park, B. R., Preparation of isomaltooligosaccharides using puffed rice flour and evaluation of physicochemical properties. Korean J Food Preserv, 25, 229-236 (2018). https://doi.org/10.11002/kjfp.2018.25.2.229
  9. Niu, D., Qiao, J., Li, P., Tian, K., Liu, X., Singh, S. and Lu, F., Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail. Electron J Biotechn, 26, 46-51 (2017). https://doi.org/10.1016/j.ejbt.2016.12.002
  10. Lin, Q., Xiao, H., Zhao, J., Li, L., Yu, F., Lin, X., and Cheng, X., Production of isomaltooligosaccharide syrup from rice starch using an one-step conversion method. Int J Food Sci Technol, 46, 1194-1200 (2011). https://doi.org/10.1111/j.1365-2621.2011.02623.x
  11. Pan, Y. C., Lee, W. C., Production of high-purity isomaltooligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol Bioeng, 89, 797-804 (2005). https://doi.org/10.1002/bit.20402
  12. Miller, G. L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31, 426-428 (1959). https://doi.org/10.1021/ac60147a030
  13. Inagaki, S., Min, J. Z. and Toyooka, T., Direct detection method of oligosaccharides by high-performance liquid chromatography with charged aerosol detection. Biomed Chromatogr, 21, 338-342 (2007). https://doi.org/10.1002/bmc.751
  14. Ko, J. H., Lee, M. S., Kwak, B. M., Ahn, J., H., Park, J. S. and Kwon, J. H., Determination of isomaltooligosaccharides in yoghurts by using HPLC-ELSD. Kor Food Sci. Anim. Resour, 33, 417-424 (2013). https://doi.org/10.5851/kosfa.2013.33.3.417
  15. Ahn, J. W., Hong, S. S., Park, K. W. and Seo, J. H., Reaction mode of transglucosidase from Aspergillus niger for production of isomaltooligosaccharide. J Korean Food Sci Technol, 28, 273-278 (1996).
  16. Plongbunjong, V., Graidist, P., Knudsen, K. E. B., and Wichienchot, S., Isomaltooligosaccharide synthesised from rice starch and its prebiotic properties in vitro. Int J Food Sci Technol, 52, 2589-2595 (2017). https://doi.org/10.1111/ijfs.13545
  17. Chockchaisawasdee, S. and Poosaran, N., Production of isomaltooligosaccharides from banana flour. J Sci Food Agric, 93, 180-186 (2013). https://doi.org/10.1002/jsfa.5747