DOI QR코드

DOI QR Code

Segmentation of Seabed Points from Airborne Bathymetric LiDAR Point Clouds Using Cloth Simulation Filtering Algorithm

항공수심라이다 데이터 해저면 포인트 클라우드 분리를 위한 CSF 알고리즘 적용에 관한 연구

  • Lee, Jae Bin (Dept. of Civil Engineering, Mokpo National University, Next Generation Drone Commercialization Research Lab.) ;
  • Jung, Jae Hoon (Civil and Construction Engineering, Oregon State University) ;
  • Kim, Hye Jin (Dept. of Civil and Environmental Engineering, Seoul National University)
  • Received : 2020.01.09
  • Accepted : 2020.02.14
  • Published : 2020.02.29

Abstract

ABL (Airborne Bathymetric LiDAR) is an advanced survey technology that uses green lasers to simultaneously measure the water depths and oceanic topography in coastal and river areas. Seabed point cloud extraction is an essential prerequisite to further utilizing the ABL data for various geographic data processing and applications. Conventional seabed detection approaches often use return waveforms. However, their limited accessibility often limits the broad use of the bathymetric LiDAR (Light Detection And Ranging) data. Further, it is often questioned if the waveform-based seabed extraction is reliable enough to extract seabed. Therefore, there is a high demand to extract seabed from the point cloud using other sources of information, such as geometric information. This study aimed to assess the feasibility of a ground filtering method to seabed extraction from geo-referenced point cloud data by using CSF (Cloth Simulation Filtering) method. We conducted a preliminary experiment with the RIGEL VQ 880 bathymetric data, and the results show that the CSF algorithm can be effectively applied to the seabed point segmentation.

항공수심라이다(ABL: Airborne Bathymetric LiDAR)는 녹색 레이저(green laser)를 사용하여 연안 및 하천에 대해 해저지형과 수심에 대한 관측을 동시에 수행하는 첨단측량 기술이다. 항공수심라이다를 활용하여 해저지형 정보를 구축하기 위해서는 취득된 포인트 클라우드로부터 해수면과 해저면 점들을 분리하고 추출하는 과정이 필요하다. 기존의 해저면 점을 추출하기 위한 연구는 주로 waveform 분석(analysis)을 기반으로 수행되었다. 하지만 일반 사용자의 경우 waveform 데이터에 대한 접근성이 낮으며, waveform 분석 기반 해저면 추출 방법론에 대한 보완도 필요하다. 본 연구는 항공수심라이다 데이터의 지형학적 정보를 사용하여 해저면 점들을 추출하기 위한 연구를 수행하였다. 이를 위해 지면분리(ground filtering) 기법인 CSF (Cloth Simulation Filtering) 알고리즘을 RIEGL VQ880 항공수심라이다 시스템으로부터 취득된 데이터에 적용하고 효용성을 분석하였다. 실험결과 CSF 알고리즘을 항공수심라이다 데이터의 해저면 포인트 추출에 효과적으로 적용할 수 있음을 확인하였다.

Keywords

References

  1. Andersen, M.S., Gergely, A., Al-Hamdani, Z., Steinbacher, F., Larsen, L.R., and Ernstsen, V.B. (2017), Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment, Hydrology and Earth System Science, Vol. 21, pp.43-63. https://doi.org/10.5194/hess-21-43-2017
  2. Chen, Z., Gao, B., and Devereux, B. (2017), State-of-the-art: DTM generation using airborne LiDAR data, Sensors, Vol. 17, No. 1, p. 150. https://doi.org/10.3390/s17010150
  3. CloudCompare (2019a), CSF (plugin), CloudCompare, https://www.cloudcompare.org/doc/wiki/index.php?title=CSF_(plugin) (last date accessed: 9 January 2020).
  4. CloudCompare (2019b), SOR filter, CloudCompare, https://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter (last date accessed: 9 January 2020).
  5. Fawcett, T. (2006), An introduction to ROC analysis, Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  6. Guenther, G.C. (1985), Airborne Laser Hydrography: System Design and Performance Factors, NOAA Professional Paper Series No. 1, National Oceanographic and Atmospheric Administration, Rockville MD, pp. 203-242.
  7. Guenther, G.C., Lillycrop, W.J., and Banic. J.R. (2002), Future advancements in airborne hydrography, International Hydrographic Review, Vol. 3, No. 2, pp. 67-90.
  8. Huising, E.J. and Gomes Pereira, L.M. (1998), Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications, ISPRS Journal of Photogrammetry, Vol. 53, pp. 245-261. https://doi.org/10.1016/S0924-2716(98)00013-6
  9. Jeong, S.H. (2015), Accuracy Analysis of Seabed Terrain Modeling Technology, Master's thesis, University of Seoul, Seoul, Korea, 93p.
  10. Kinzel, P.J., Legleiter, C.J., and Nelson. J.M. (2013), Mapping river bathymetry with a small footprint green Lidar: applications and challenges, Journal of the American Water Resources Association, Vol. 49, pp. 183-204. https://doi.org/10.1111/jawr.12008
  11. Landis, J.R. and Koch, G.G. (1977), The measurement of observer agreement for categorical data, Biometrics, Vol. 33, No.1, pp. 159-174. https://doi.org/10.2307/2529310
  12. Lee, J., Kim, H., Hur, H., and Wie, K. (2019), Integration of airborne bathymetric LiDAR and multi-beam echo-sounder data for construction of high resolution terrain data in intertidal zone, Journal of Korean Society for Geospatial Information Science, Vol. 27, No. 2, pp. 23-30. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2019.27.2.023
  13. Leica (2015), Leica LiDAR Survey Studio, Leica, http://leica-geosystems.com/products/airborne-systems/software/leica-lidar-survey-studio (last date accessed: 9 January 2020).
  14. Mandlburger, G., Hauer, C., Wieser, M., and Pfeifer, N. (2015), Topobathymetric LiDAR for monitoring river morphodynamics and instream habitats-A case study at the Pielach River, Remote Sensing, Vol. 7, No. 5, pp. 6160-6195. https://doi.org/10.3390/rs70506160
  15. Nagle, D.B. and Wright, W.C. (2016), Algorithms Used in the Airborne Lidar Processing System (ALPS), Open-File Report 2016-1046, U.S. Geological Survey, Reston, Virginia, pp. 28-31.
  16. NOAA (2018), NOAA data access viewer, NOAA, https://coast.noaa.gov/dataviewer/#/ (last date accessed: 9 January 2020).
  17. Paine, J.G., Andrews, J.R., Saylam, K., and Tremblay, T.A. (2015), Airborne Lidar-based wetland and permafrostfeature mapping on an arctic coastal plain, north slope, Alaska, In: Remote Sensing of Wetlands, CRC Press, Boca Raton, F.L., pp. 413-434.
  18. Polat, N. and Uysal, M. (2015), Investigating performance of airborne LiDAR data filtering algorithms for DTM generation, Measurement, Vol. 63, pp. 61-68. https://doi.org/10.1016/j.measurement.2014.12.017
  19. Provot, X. (1995), Deformation constraints in a mass-spring model to describe rigid cloth behaviour, Graphics Interface 95, 17-19 May, Quebec, Canada, pp.147-154.
  20. RIEGL (2015), RiHYDRO data sheet, RIEGL, http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_RiHYDRO_2018-09-28_01.pdf (last date accessed: 9 January 2020).
  21. RIEGL (2018), VQ880G information sheet, RIEGL, http://www.riegl.com/uploads/tx_pxpriegldownloads/Infosheet_VQ-880-G_2016-05-23.pdf (last date accessed: 9 January 2020).
  22. Saylam K., Hupp R.J., Averett R.A., Gutelius W.F., and Gelhar W.B. (2018), Airborne lidar bathymetry: assessing quality assurance and quality control methods with Leica Chiroptera examples, International Journal of Remote Sensing, Vol. 39, pp. 2518-2542. https://doi.org/10.1080/01431161.2018.1430916
  23. Schwarz, R., Mandlburger, G., Pfennigbauer, M., and Pfeifer, N. (2019), Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 150, pp. 1-10. https://doi.org/10.1016/j.isprsjprs.2019.02.002
  24. Shin, M.S., Yang, I.T., and Lee, D.H. (2016), A study on airborne LiDAR calibration and operation techniques for bathymetric survey, Journal of the Korean Society for Geospatial Information Science, Vol. 24, No. 2, pp. 113-120. https://doi.org/10.7319/kogsis.2016.24.2.113
  25. Teledyne Optech (2013), Optech HydroFusion Information Sheet, Teledyne Optech, http://info.teledyneoptech.com/acton/attachment/19958/f-02e0/1/-/-/-/-/HydroFusion-Information-Sheet-160129-WEB.pdf (last date accessed: 6 January 2020).
  26. Webster, T., McGuigan, K., Crowell, N., Collins, K., and MacDonald. C. (2014), Acquisition and Processing of Topobathymetric Lidar for Isle Madame in Support of the World Class Tanker Safety Initiative, Applied Geomatics Research Group. NSCC Middleton, NS, pp. 1-56.
  27. Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., and Yan G. (2016), An easy-to-use airborne LiDAR data filtering method based on cloth simulation, Remote Sensing, Vol. 8, p. 501. https://doi.org/10.3390/rs8060501

Cited by

  1. 3D 레이저스캐너를 활용한 유류 저장탱크의 검사 vol.21, pp.12, 2020, https://doi.org/10.5762/kais.2020.21.12.867