DOI QR코드

DOI QR Code

Analysis of Genetic Diversity and Population Structure of Wild Strains and Cultivars Using Genomic SSR Markers in Lentinula edodes

  • Lee, Hwa-Yong (Department of Forest Science, Chungbuk National University) ;
  • Moon, Suyun (Department of Biology, Chungbuk National University) ;
  • Ro, Hyeon-Su (Division of Applied Life Science and Research Institute of Life Science, Gyeongsang National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • Received : 2019.07.13
  • Accepted : 2020.01.25
  • Published : 2020.04.30

Abstract

In this study, the genetic diversity and the population structure of 77 wild strains and 23 cultivars of Lentinula edodes from Korea were analyzed using 20 genomic SSRs, and their genetic relationship was investigated. The tested strains of L. edodes were divided into three sub-groups consisting of only wild strains, mainly wild strains and several cultivars, and mainly cultivars and several wild strains by distance-based analysis. Using model-based analysis, L. edodes strains were divided into two subpopulations; the first one consisting of only wild strains and the second one with mainly cultivars and several wild strains. Moreover, AMOVA analysis revealed that the genetic variation in the cultivars was higher than that in the wild strains. The expected and observed heterozygosity and values indicating the polymorphic information content of L. edodes cultivars from Korea were also higher than that of the wild strains. Based on these results, we presume that the cultivars in Korea have developed by using numerous strains from other countries. In conclusion, the usage of wild strains for the development of new cultivars could improve the adaptability of L. edodes to biotic and abiotic stress.

Keywords

References

  1. Hibbett DS. Shiitake mushrooms and molecular clocks: historical biogeography of Lentinula. J Biogeogr. 2001;28(2):231-241. https://doi.org/10.1046/j.1365-2699.2001.00528.x
  2. Bisen PS, Baghel RK, Sanodiya BS, et al. Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem. 2010;17(22):2419-2430. https://doi.org/10.2174/092986710791698495
  3. Finimundy TC, Dillon AJ, Henriques JA, et al. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci . 2014;5:1095-1105. https://doi.org/10.4236/fns.2014.512119
  4. Chang S, Miles P. Historical record of the early cultivation of Lentinus in China. Mushroom J Trop. 1987;7:31-37.
  5. Terashima K, Matsumoto T, Hasebe K, et al. Genetic diversity and strain-typing in cultivated strains of Lentinula edodes (the shii-take mushroom) in Japan by AFLP analysis. Mycol Res. 2002;106(1):34-39. https://doi.org/10.1017/S0953756201005007
  6. Royse DJ, Barrs J, Tan Q. Current overview of mushroom production in the world. In: Zeid DC, Pardo-Gimenez A, editors. Edible and medical mushrooms: technology and applications. Hoboken: John Wiley & Sons Ltd.; 2017. p. 5-13.
  7. Kim KH, Ka KH, Kang JH, et al. Identification of single nucleotide polymorphism markers in the Laccase gene of Shiitake mushrooms (Lentinula edodes). Mycobiology. 2015;43(1):75-80. https://doi.org/10.5941/MYCO.2015.43.1.75
  8. George PL, Sripathi VR, Seloame TN, et al. DNAbased identification of Lentinula edodes strains with species-specific primers. Afr J Biotechnol. 2016;15:191-198. https://doi.org/10.5897/AJB2015.15089
  9. Abid G, Mingeot D, Udupa SM, et al. Genetic relationship and diversity analysis of Faba Bean (Vicia faba L. var. Minor) genetic resources using morphological and microsatellite molecular markers. Plant Mol Biol Rep. 2015;33(6):1755-1767. https://doi.org/10.1007/s11105-015-0871-0
  10. Rao NK, Reddy LJ, Bramel PJ. Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol. 2003;50:707-721. https://doi.org/10.1023/A:1025055018954
  11. Jarvis A, Lane A, Hijmans RJ. The effect of climate change on crop wild relatives. Agric Ecosyst Environ. 2008;126(1-2):13-23. https://doi.org/10.1016/j.agee.2008.01.013
  12. Tanskley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063-1066. https://doi.org/10.1126/science.277.5329.1063
  13. Xiang X, Li C, Li L, et al. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog. 2016;15:37. https://doi.org/10.1007/s11557-016-1183-y
  14. Liu CJ. Geographical distribution of genetic variation in Stylosanthes scabra revealed by RAPD analysis. Euphytica. 1997;98(1/2):21-27. https://doi.org/10.1023/A:1003026915825
  15. Eagles HA, Bariana HS, Ogbonnaya FC, et al. Implementation of markers in Australian wheat breeding. Aust J Agric Res. 2001;52(12):1349-1356. https://doi.org/10.1071/AR01067
  16. Kaur S, Panesar PS, Bera MB, et al. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Crit Rev Food Sci Nutr. 2015;55(1):41-49. https://doi.org/10.1080/10408398.2011.646363
  17. Ye-Yun X, Zhan Z, Yi-Ping X, et al. Identification and purity test of super hybrid rice with SSR molecular markers. Rice Sci. 2005;12:7-12.
  18. Cirillo A, Gaudio SD, Bernardo DG, et al. Molecular characterization of Italian rice cultivars. Eur Food Res Technol. 2009;228(6):875-881. https://doi.org/10.1007/s00217-008-1000-1
  19. Khan F. Molecular markers: an excellent tool for genetic analysis. J Mol Biomark Diagn. 2015;06(03):233. https://doi.org/10.4172/2155-9929.1000233
  20. Zhang Q, Li J, Zhao Y, et al. Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep. 2012;30(3):539-546. https://doi.org/10.1007/s11105-011-0366-6
  21. Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9(5):615-629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
  22. Du QZ, Wang BW, Wei ZZ, et al. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered. 2012;103(6):853-862. https://doi.org/10.1093/jhered/ess061
  23. Lee HY, Moon S, Shim D, et al. Development of 44 Novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8(4):109. https://doi.org/10.3390/genes8040109
  24. Moon S, Lee HY, Shim D, et al. Development and molecular characterization of novel polymorphic genomic DNA SSR markers in Lentinula edodes. Mycobiology. 2017;45(2):105-109. https://doi.org/10.5941/MYCO.2017.45.2.105
  25. Liu K, Muse SV. PowerMarker: a intergrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  26. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70(12):3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  27. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. https://doi.org/10.1093/genetics/155.2.945
  28. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  29. Yoon MY, Moe KT, Kim DY, et al. Genetic diversity and population structure analysis of strawberry (Fragaria x ananassa Duch.) using SSR markers. Electron J Biotechnol. 2012;15:1-16.
  30. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  31. Kim KH, Kim YY, Ka KH, et al. Microsatellite marker for population-genetics studies of shiitake (Lentinula edodes) strains. Genes Genom. 2009;31(6):403-411. https://doi.org/10.1007/BF03191853
  32. Jeong YS, Jang Y, Ryoo R, et al. Genotyping of the wild mushroom Lentinula edodes from Mt. Jungwang and Mt. Gariwang in Korea. Kor J Mycol. 2016;44:289-295. https://doi.org/10.4489/KJM.2016.44.4.289
  33. Xiao Y, Cheng X, Liu J, et al. Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Sci Rep. 2016;6(1):36789. https://doi.org/10.1038/srep36789
  34. Greenbaum G, Templeton AR, Zarmi Y, et al. Allelic richness following population founding events - a stochastic modeling framework incorporating gene flow and genetic drift. PLOS One. 2014;9(12):e115203. https://doi.org/10.1371/journal.pone.0115203
  35. Sharma MV, Kantartzi SK, Stewart JM. Molecular diversity and polymorphism information content of selected Gossypium hirsutum accessions. Summ Ark Cotton Res. 2009;582:124-126.
  36. Li C, Gong W, Zhang L, et al. Association mapping reveals genetic loci associated with important agronomic traits in Lentinula edodes, Shiitake mushroom. Front Microbiol. 2017;8:237.
  37. Ha B, Kim S, Kim M, et al. Diversity of A mating type in Lentinula edodes and mating type preference in the cultivated strains. J Microbiol. 2018;56(6):416-425. https://doi.org/10.1007/s12275-018-8030-6
  38. Schaid DJ, Batzler AJ, Jenkins GD, et al. Exact tests of Hardy-Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet. 2006;79(6):1071-1080. https://doi.org/10.1086/510257

Cited by

  1. SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석 vol.18, pp.4, 2020, https://doi.org/10.14480/jm.2020.18.4.323
  2. Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers vol.49, pp.4, 2020, https://doi.org/10.1080/12298093.2021.1940746