DOI QR코드

DOI QR Code

Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code

  • Received : 2019.05.28
  • Accepted : 2019.07.09
  • Published : 2020.01.25

Abstract

A methodology for evaluation of mechanical and thermal effects of localized non-axisymmetric oxidation in zircaloy claddings on LWR fuel reliability is proposed. To this end, the basic capabilities of the FALCON fuel behaviour code are used. Examples of methodology application to adjustment of selected operational limits for modern BWR fuel rods, to capture effects of the excess local oxidation, are presented. Specifically, the limiting rod internal pressure for the onset of cladding lift-off is reduced, depending on initial excess oxidation spot sizes. Also, the power limits for Anticipated Operational Occurrences are adjusted, to preclude fuel melting and cladding failure due to PCMI and PCI-SCC in the affected fuel rods.

Keywords

References

  1. MATPRO - Version 11, A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior. NUREG/CR-0497 TREE-1280, February 1979.
  2. K.M. Becker, J. Engstrom, O. Nylund, B. Scholin, B. Soderquist, Analysis of the dryout incident in the oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6) (1990) 959-974. November-December. https://doi.org/10.1016/0301-9322(90)90101-N
  3. Ines Gunther-Leopold, Marlene Krois, Judith Kobler Waldis, Hanspeter Linder, Sousan Abolhassani, Investigation of fuel crud by means of ICP-MS and TEM, Procedia Chem. 7 (2012) 673-678. https://doi.org/10.1016/j.proche.2012.10.102
  4. N. Cinosi, I. Haq, M. Bluck, S.P. Walker, The effective thermal conductivity of crud and heat transfer from crud-coated PWR fuel, Nucl. Eng. Des. 241 (2011) 792-798. https://doi.org/10.1016/j.nucengdes.2010.12.015
  5. Mats Ullberg, Gunnar Lysell, Ann-Charlotte Nystrand, Shadow corrosion mechanisms of zircaloy. SKI Report 28, 2004. February 2004.
  6. A. Medvedev, Y. Bibilashvili, S. Bogatyr, G. Khvostov, Modelling of WWER-1000 fuel: state and prospects, in: Proc.: Conference on VVER Reactor Fuel Performance, Modelling and Experimental Support. St. Constantine, Varna, Bulgaria, November 1994.
  7. A. Medvedev, S. Bogatyr, V. Kouznetsov, G. Khvostov, V. Lagovsky, L. Korystin, V. Poudov, Fuel rod behavior at high burnup WWER fuel cycles, in: Proc.: 5th International Conference on WWER Fuel Performance, Modeling and Experimental Support, Congress Center Albena, Bulgaria, 2003, 29 September - 3 October.
  8. Nuclear Fuel Safety Criteria Technical Review, second ed., OECD/NEA Report, 2012, ISBN 978-92-64-99178-1. OECD-NEA web: https://www.oecd-nea.org/nsd/reports/2012/nea7072-fuel-safety-criteria.pdf.
  9. V. Brankov, G. Khvostov, K. Mikityuk, A. Pautz, R. Restani, S. Abolhassani, W. Wiesenack, Analysis of effects of pellet-cladding bonding on trapping of the released fission gases in high-burnup KKL BWR fuels, Nucl. Eng. Des. 305 (2016) 559-568. https://doi.org/10.1016/j.nucengdes.2016.06.021
  10. Improvement of Computer Codes Used for Fuel Behaviour Simulation (FUMEX-III) - Report of a Coordinated Research Project 2008-2012. IAEA Report, IAEA-TECDOC-1697.
  11. EPRI Product Id 1011307, Fuel analysis and licensing Code: FALCON MOD01: volume 1: theoretical and numerical bases, EPRI web: https://www.epri.com/#/pages/product/000000000001011307/, 2004.
  12. EPRI Product Id 1011309, Fuel analysis and licensing code: FALCON MOD01: volume 3: verification and validation, EPRI web, https://www.epri.com/#/pages/product/000000000001011309/, 2004.
  13. G. Khvostov, Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring, Nucl. Eng. Technol. 50 (2018) 1190-1197. https://doi.org/10.1016/j.net.2018.07.003
  14. G. Khvostov, W. Wiesenack, Analysis of selected Halden overpressure tests using the FALCON code nuclear engineering and design, Nucl. Eng. Des. 310 (2016) 395-409. https://doi.org/10.1016/j.nucengdes.2016.10.033
  15. US Nuclear regulatory Commission standard Review plan 4.2 e fuel system design, (USNRC SRP 4.2), NUREG-0800 Rev 3, March 2007.
  16. M. Bales, Establishing analytical limits for zirconium-alloy cladding Material. U.S. NRC Regulatory Guide 1.224 - Preliminary Draft DG-1263, March 2014. US-NRC web: https://www.nrc.gov/docs/ML1528/ML15281A192.pdf. (Accessed 11 July 2019).
  17. Technical and Regulatory Basis, Acceptance criteria and guidance for the reactivity-initiated accident, USNRC Memorand. 16 (2015).
  18. G. Khvostov, A dynamic model for fission gas release and gaseous swelling integrated into the FALCON fuel analysis and licensing code, in: Proceedings of the conference: Top Fuel, Paris, France, September 6-10, 2009, 2009. Paper 2085.
  19. G. Khvostov, Models for numerical simulation of burst FGR in fuel rods under the conditions of RIA, Nucl. Eng. Des. 328 (2018) 36-57. https://doi.org/10.1016/j.nucengdes.2017.12.028
  20. G. Khvostov, K. Mikityuk, M.A. Zimmermann, A model for fission gas release and gaseous swelling of the uranium dioxide fuel coupled with the FALCON code, Nucl. Eng. Des. 241 (2011) 2983-3007. https://doi.org/10.1016/j.nucengdes.2011.06.020
  21. F. Ribeiro, G. Khvostov, Multi-scale approach to advanced fuel modelling for enhanced safety, Prog. Nucl. Energy 84 (2015) 24-35. https://doi.org/10.1016/j.pnucene.2015.03.022
  22. M. Limback, T. Andersson, A model for analysis of the effects of final annealing on the in- and out-of-reactor creep behaviour of zircaloy cladding, in: E.R. Bradley, G.P. Sabol (Eds.), ASTM STP 1295, American Society for Testing and Materials, 1996, pp. 448-468.
  23. K.V. Moore, et al., RETRAN - A Program for One-Dimensional Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems, vol. 1, EPRI CCM-5, December, 1978.
  24. C.W. Stewart, VIPRE-01: A Thermal-Hydraulic Code for Reactor Cores vol. 1, July 1985. Mathematical Modeling (Revision 2). NP-2511-CCM.
  25. EPRI Product Id 1011308, Fuel Analysis and Licensing Code: FALCON MOD01: Volume 2: User's Manual. EPRI Web. https://www.epri.com/#/pages/product/000000000001011308/, 2004.
  26. P. Blanpain, X. Thibault, J.-P. Pages, Recent results from the in-reactor MOX fuel performance in France and improvement program, in: Proc.: International Topical Meeting on Light Water Reactor Fuel Performance, Portland Oregon, 1997. March 2-6.
  27. G. Khvostov, V. Novikov, A. Medvedev, S. Bogatyr, Approaches to modeling of high burn-up structure and analysis of its effects on the behaviour of light water reactor fuels in the START-3 fuel performance code, in: Proc.: 2005 LWR Fuel Performance Meeting, Kyoto, Japan, October 2005.
  28. G. Ledergerber, S. Valizadeh, J. Wright, M. Limback, L. Hallstadius, D. Gavillet, S. Abolhassani, F. Nagase, T. Sugiyama, W. Wiesenack, T. Tverberg, Fuel behaviour beyond design - exploring the limits, in: Proceedings of the conference: 2010 LWR Fuel Performance/TopFuel/WRFPM, Orlando, Florida, USA, September 26-29, 2010, 2008. Paper 0044.
  29. G. Khvostov, W. Lyon, M. Zimmermann, Application of the FALCON code to PCI induced cladding failure and the effects of missing pellet surface, Ann. Nucl. Energy 62 (2013) 398-412. https://doi.org/10.1016/j.anucene.2013.07.002
  30. A.T. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res. 45 (2015) 311-343. https://doi.org/10.1146/annurev-matsci-070214-020951
  31. Review of Fuel Failures in Water Cooled Reactors, IAEA Nuclear Energy Series, 2010. No. NF-T-2.1.

Cited by

  1. Dry storage modeling activities at PSI: implementation and testing of a creep model for dry storage vol.85, pp.6, 2020, https://doi.org/10.3139/124.200072