DOI QR코드

DOI QR Code

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Ye, Yicheng (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Wang, Qihu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Luo, Binyu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Wang, Jie (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Liu, Yang (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
  • Received : 2019.09.25
  • Accepted : 2020.05.18
  • Published : 2020.06.25

Abstract

Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.

Keywords

Acknowledgement

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51704213 and 51574183), the Special Project of Central Government for Local Science and Technology Development of Hubei Province (2019ZYYD060) and the Open Fund of Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources in 2019 (No. 2019zy002).

References

  1. Ajalloeian, R., Moghaddam, B. and Azimian, A. (2017), "Prediction of Rock Mass Squeezing of T4 Tunnel in Iran", Geotech. Geol. Eng., 35(2), 747-763. https://doi.org/10.1007/S10706-016-0139-Y.
  2. Alneasan, M., Behnia, M. and Bagherpour, R. (2019), "Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension", Eng. Geol., 259, 105188. https://doi.org/10.1016/j.enggeo.2019.105188.
  3. AlTammar, M.J., Agrawal, S. and Sharma, M.M. (2019), "Effect of geological layer properties on hydraulic-fracture initiation and propagation: an experimental study", SPE J., 24(2), 757-794. https://doi.org/10.2118/184871-pa.
  4. Amann, F., Button, E.A., Evans, K.F., Gischig, V.S. and Blumel, M. (2011), "Experimental study of the brittle behavior of clay shale in rapid unconfined compression", Rock Mech. Rock Eng., 44(4), 415-430. https://doi.org/10.1007/s00603-011-0156-3.
  5. Amann, F., Undul, O. and Kaiser, P.K. (2014), "Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks", Rock Mech. Rock Eng., 47(5), 1849-1865. https://doi.org/10.1007/s00603-013-0495-3.
  6. Bauer, S.J., Song, B. and Sanborn, B. (2019), "Dynamic compressive strength of rock salts", Int. J. Rock Mech. Min. Sci., 113, 112-120. https://doi.org/10.1016/j.ijrmms.2018.11.004.
  7. Bourne S.J. (2003), "Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression", J. Geophys. Res., 108(B8), 1-11. https://doi.org/10.1029/2001JB001725.
  8. Cawood, A.J. and Bond, C.E. (2018), "3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning", J. Struct. Geol., 106, 54-69. https://doi.org/10.1016/j.jsg.2017.11.011.
  9. Celleri, H.M., Sanchez, M. and Otegui J.L. (2018), "Fracture behavior of transversely isotropic rocks with discrete weak interfaces", Int. J. Numer. Anal. Meth. Geomech., 42, 2161-2176. https://doi.org/10.1002/nag.2849.
  10. Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Guo, W.J. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech. Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.
  11. Chen, Y.L., Zuo, J.P., Liu, D.J. and Wang, Z.B. (2018), "Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations", Bull. Eng. Geol. Environ, 78(5), 3449-3464. https://doi.org/10.1007/s10064-018-1336-0.
  12. Douma, L.A.N.R., Regelink, J.A., Bertotti, G., Boersma, Q.D. and Barnhoorn, A. (2019), "The mechanical contrast between layers controls fracture containment in layered rocks", J. Struct. Geol., 127, 1-11. https://doi.org/10.1016/j.jsg.2019.06.015.
  13. Dubinya, N.V. and Galybin, A.N. (2018), "On Stress Distribution in Layered Rock Masses", Izv. Phys. Solid Earth, 54(6), 904-913. https://doi.org/10.1134/s1069351318060046.
  14. Feng, W.K., Huang, R.Q. and Li, T.B. (2012), "Deformation analysis of a soft-hard rock contact zone surrounding a tunnel", Tunn. Undergr. Sp. Technol., 32, 190-197. http://dx.doi.org/10.1016/j.tust.2012.06.011.
  15. Ferrill, D.A., Morris, A.P. and McGinnis, R.N. (2012), "Extensional fault-propagation folding in mechanically layered rocks: the case against the frictional drag mechanism", Tectonophysics, 576, 78-85. https://doi.org/10.1016/j.tecto.2012.05.023.
  16. Hu, B., Yang, S.Q., Xu, P. and Cheng, J.L. (2019), "Cyclic loading-unloading creep behavior of composite layered specimens", Acta Geophys, 67(2), 449-464. https://doi.org/10.1007/s11600-019-00261-x.
  17. Huang, C.C., Yang, W.D., Duan, K., Fang, L.D., Wang, L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
  18. Klein, E., Baud, P., Reuschle, T. and Wong, T.F. (2001), "Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression", Phys. Chem. Earth Solid Earth Geodes, 26(1-2), 21-25. https://doi.org/10.1016/S1464-1895(01)00017-5.
  19. Li, Y.P., Liu, W., Yang, C.H. and Daemen, J.J.K. (2014), "Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer", Int. J. Rock Mech. Min. Sci., 69, 39-49. http://doi.org/10.1016/j.ijrmms.2014.03.006.
  20. Liang, W., Yang, C., Zhao, Y., Dusseault, M.B. and Liu, J. (2007), "Experimental investigation of mechanical properties of bedded salt rock", Int. J. Rock Mech. Min. Sci., 44(3), 400-411. https://doi.org/10.1016/j.ijrmms.2006.09.007.
  21. Liu, J., Wang, E.Y., Song, D.Z., Wang, S.H. and Niu, Y. (2014), "Effect of rock strength on failure mode and mechanical behavior of composite samples", Arab. J. Geosci, 8(7), 4527-4539. https://doi.org/10.1007/s12517-014-1574-9.
  22. Lu, S.Q., Li, L., Cheng, Y.P., Sa, Z.Y., Zhang, Y.L. and Yang, N. (2017), "Mechanical failure mechanisms and forms of normal and deformed coal combination containing gas: Model development and analysis", Eng. Fail. Anal., 80, 241-252. http://doi.org/10.1016/j.engfailanal.2017.06.022.
  23. Machek, M., Roxerova, Z., Zavada, P., Silva, P.F., Henry, B., Dedecek, P., Petrovsky, E. and Marques, F.O. (2014), "Intrusion of lamprophyre dyke and related deformation effects in the host rock salt: A case study from the Loule diapir, Portugal", Tectonophysics, 629, 165-178. https://doi.org/10.1016/j.tecto.2014.04.030.
  24. McBeck, J., Mair, K. and Renard, F. (2019), "Linking macroscopic failure with micromechanical processes in layered rocks: How layer orientation and roughness control macroscopic behavior", Tectonophysics, 750, 229-242. https://doi.org/10.1016/j.tecto.2018.11.016.
  25. Muller, C., Fruhwirt, T., Haase, D., Schlegel, R. and Konietzky, H. (2018), "Modeling deformation and damage of rock salt using the discrete element method", Int. J. Rock Mech. Min. Sci., 103, 230-241. https://doi.org/10.1016/j.ijrmms.2018.01.022.
  26. Niandou, H., Shao, J.F., Henry, J.P. and Fourmaintraux, D. (1997), "Laboratory investigation of the mechanical behavior of tournemire shale", Int. J. Rock Mech. Min. Sci., 34(1), 3-16. https://doi.org/10.1016/S1365-1609(97)80029-9.
  27. Panda, M.K., Mohanty, S., Pingua, B.M.P. and Mishra, A.K. (2014), "Engineering geological and geotechnical investigations along the head race tunnel in Teesta Stage-III hydroelectric project, India", Eng. Geol., 181, 297-308. http://doi.org/10.1016/j.enggeo.2014.08.022.
  28. Vales, F., Minh, D.N., Gharbi, H. and Rejeb, A. (2004), "Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France)", Appl. Clay Sci., 26, 197-207. https://doi.org/10.1016/j.clay.2003.12.032.
  29. Wang, K. and Du, F. (2019), "Experimental investigation on mechanical behavior and permeability evolution in coal-rock combined body under unloading conditions", Arab. J. Geosci., 12(14), 1-15. https://doi.org/10.1007/s12517-019-4582-y.
  30. Xing, Y., Kulatilake, P.H.S.W. and Sandbak, L.A. (2018), "Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine", Eng. Geol., 238, 62-75. https://doi.org/10.1016/j.enggeo.2018.03.010.
  31. Xing, Y., Kulatilake, PHSW. and Sandbak, L.A. (2019), "Stability assessment and support design for underground tunnels located in complex geologies and subjected to engineering activities: Case study", Int. J. Geomech., 19(5), 1-9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001402.
  32. Yang, S.Q., Yin, P.F., Huang, Y.H. and Cheng, J.L. (2019), "Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures", Eng. Fract. Mech., 214, 1-20. https://doi.org/10.1016/j.engfracmech.2019.04.030.
  33. Yassaghi, A. and Salari-Rad, H. (2005), "Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study", Int. J. Rock Mech. Min. Sci., 42(1), 95-108. https://doi.org/10.1016/j.ijrmms.2004.07.002.
  34. Yin, D.W., Chen, S.J., Chen, B., Liub, X.Q. and Ma, H.F. (2018), "Strength and failure characteristics of the rock-coal combined body with single joint in coal", Geomech. Eng., 15(5), 1113-1124. https://doi.org/10.12989/gae.2018.15.5.1113.
  35. Yue, K., Olson, J.E. and Schultz, R.A. (2018), "Layered modulus effect on fracture modeling and height containment", Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, U.S.A., July.
  36. Zanjani, M.M. and Soroush, A. (2019), "Numerical modelling of fault rupture propagation through layered sands", Eur. J. Environ. Civ. Eng., 23(9), 1139-1155. https://doi.org/10.1080/19648189.2017.1344148.
  37. Zhang, G.H., Jiao, Y.Y., Ma, C.X., Wang, H., Chen, L.B. and Tang, Z.C. (2018), "Alteration characteristics of granite contact zone and treatment measures for inrush hazards during tunnel construction - A case study", Eng. Geol., 235, 64-80. https://doi.org/10.1016/j.enggeo.2018.01.022.
  38. Zhang, N., Shi, X.L., Wang, T.T., Yang, C.H., Liu, W., Ma, H.L. and Daemen, J.J.K. (2017), "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China", Energy, 134, 504-514. http://doi.org/10.1016/j.energy.2017.06.073.
  39. Zhao, Z.h., Wang, W.M., Dai, C.Q. and Yan, J.X. (2014), "Failure characteristics of three-body model composed of rock and coal with different strength and stiffness", Trans. Nonferr. Met. Soc., 24(5), 1538-1546. https://doi.org/10.1016/S1003-6326(14)63223-4.