DOI QR코드

DOI QR Code

Range Error of Monopulse Radar according to the Engagement Angle of Cross-Eye Jammer

크로스아이 재머의 조우각에 따른 모노펄스 레이다의 거리 오차

  • Lim, Joong-Soo (Division of Information Communication Technology, Baekseok University) ;
  • Chae, Gyoo-Soo (Division of Information Communication Technology, Baekseok University)
  • Received : 2020.04.01
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

In this paper, we analyzed the tracking error for the monopulse radar by controlling the phase difference, amplitude ratio and engagement angle of the cross-eye jammer. Cross-eye jamming is an important jamming method for monopulse radars, which causes a displacement in the radar receiving antenna input and misleads the radar's tracking angle. As a result of analyzing the tracking distance error of the radar while changing the engagement angle between the monopulse radar and jammer, the maximum distance error occurs when the engagement angle is 0° and the phase difference is 180°. It was confirmed that the error decreased to 70% or less of the maximum distance error into 45°~135°. In order to increase the efficiency of jammers, it is necessary to study rotary jammers or multi-channel jammers. This study will be very useful for the design of cross-eye jammers for aircraft and ships.

본 논문에서는 크로스아이 재머의 위상차와 진폭비 및 조우각을 제어하여 모노펄스 레이다의 추적 거리오차를 분석하였다. 크로스아이 재밍은 모노펄스 레이다의 중요한 재밍 방법으로 레이다 수신안테나의 입력에 변위를 유발하여 레이다의 추적 각도를 오도시킨다. 모노펄스 레이다와 재머 사이의 조우각을 변화시키면서 레이다의 추적 거리오차를 분석한 결과 조우각이 0°이고 위상차가 180° 일 때 최대 거리오차가 발생하며 조우각이 45°~135°가 되면 거리오차가 최대 거리오차의 70% 이하로 감소하는 것을 확인하였다. 재머의 효율을 높이기 위해서는 회전 재머나 다수 채널 재머에 대한 연구가 필요하며, 본 연구는 항공기 및 함정의 크로스아이 재머 설계에 유용하게 활용될 것으로 판단된다.

Keywords

References

  1. D. L. Adamy. (2015). EW 104 EW against a New Generation of Threats, Artech House, 319-321.
  2. A. D. Mattino. (2012). Introduction to Mordern EW Systems, Artech House, 325-334.
  3. D. C. Schleher. (1999). A Electronic Warfare in the Information Age, Artech House, Boston, 201-214.
  4. F. Neri. (2001). Introduction to electronic Defense Systems, 2nd ed., Artech House, Boston, 324-334.
  5. L. B. van Brunt. (1995). Applied ECM, volume 3, EW Engineering. Inc. VA, 762-764.
  6. W. D. Plessis. (2010). A Comprehensive Investigation of Retrodirective Cross-Eye Jamming. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 86-95.
  7. Y. S. Jang & J. T. Park. (2018). Performance Experiment of the Angle Deception of Cross-Eye Jamming against a Monopulse Sensor. Journal of the Korean Institute of EM Engineering and Science, 29(2), 146-149.
  8. W. D. Plessis. (2016). Cross-Eye gain in multi-loop retrodirective cross-eye jamming. IEEE Trans. Aerosp Electron Systm, 52(2), 875-882. https://doi.org/10.1109/TAES.2016.140112
  9. T. Liu, X. Wei, Z. Liu & d Z. Guan. (2019). Continuous and Stable Cross-Eye Jamming via a Circular Retrodirective Array. Journal of Electronics, 8(7), 1-16.
  10. B. R. Mahafaza. (2005). Radar Systems Analysis and Design Using Matlab(2nd Edition), Chapman and Hall, 297-300.
  11. A. V. Essop. (2016). Electronic Attack of a Dual Band Radar. Dissertation. Department of Electrical Engineering, University of Cape Town, 196-240.
  12. Y. H. Kim, J. S. Lim, G. S. Chae & K. C. Kim. (2015). An investigation of the Azimuth Error for Correlative Interferometer Direction Finding. Journal of the Korea Convergence Society, 6(5), 249-255. https://doi.org/10.15207/JKCS.2015.6.5.249
  13. J. S. Lim, Y. H. Kim & K. C. Kim. (2017). A Simulator for Analyzing of Correlative Interferometer Direction Finder. Journal of the SMB Convergence Society, 7(2), 53-58. DOI : 10.22156/CS4SMB.2017.7.2.037
  14. J. S. Lim. (2019), Multi-Signal Regeneration Effect of Quadrature Digital Radio-Frequency Memory, Journal of Convergence for Information Technology, 9(8), 134-139. DOI : 10.22156/CS4SMB.2019.9.8.134
  15. J. S. Lim & G. S. Chae. (2020). Jamming Effect of Stand-Off Jammer to Main Lobe of LPI Radar. Journal of Convergence for Information Technology, 10(3), 16-21. DOI : 10.22156/CS4SMB.2020.10.03.016