DOI QR코드

DOI QR Code

Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data

다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정

  • Kim, Jin-Young (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kwon, Duk-Soon (ISAN Corporation) ;
  • Bae, Deg-Hyo (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kwon, Hyun-Han (Department of Civil and Environmental Engineering, Sejong University)
  • 김진영 (세종대학교 건설환경공학과) ;
  • 권덕순 ((주)이산 수자원부) ;
  • 배덕효 (세종대학교 건설환경공학과) ;
  • 권현한 (세종대학교 건설환경공학과)
  • Received : 2020.03.20
  • Accepted : 2020.04.14
  • Published : 2020.05.31

Abstract

The main objective of this study is to provide a robust model for estimating parameters of the Clark unit hydrograph (UH) using the observed rainfall-runoff data in the Soyangang dam basin. In general, HEC-1 and HEC-HMS models, developed by the Hydrologic Engineering Center, have been widely used to optimize the parameters in Korea. However, these models are heavily reliant on the objective function and sample size during the optimization process. Moreover, the optimization process is carried out on the basis of single rainfall-runoff data, and the process is repeated for other events. Their averaged values over different parameter sets are usually used for practical purposes, leading to difficulties in the accurate simulation of discharge. In this sense, this paper proposed a hierarchical Bayesian model for estimating parameters of the Clark UH model. The proposed model clearly showed better performance in terms of Bayesian inference criterion (BIC). Furthermore, the result of this study reveals that the proposed model can also be applied to different hydrologic fields such as dam design and design flood estimation, including parameter estimation for the probable maximum flood (PMF).

본 연구에서는 소양강댐 유역에서의 실측 단일사상 강우-유출 자료를 활용하여 Clark 단위도 방법의 매개변수를 최적화 하였으며, 그 결과를 제시하였다. 일반적으로 국내에서는 유역특성인자 최적화 분석시 미육군공병단의 HEC-1, HEC-HMS 등의 모형을 사용하고 있다. 그러나 해당 모형의 경우 유출수문곡선의 형상, 크기 등의 재현에만 초점이 맞춰져 있으며, 산정된 매개변수들의 평균을 사용하고 있어 실제 강우-유출 관계를 묘사하는데 어려움이 존재하고 있다. 이러한 점에서 본 연구에서는 기존 Clark 합성단위도법과 계층적 Bayesian 기법을 결합하여 수집된 강우-유출 자료를 동시에 활용하여 매개변수를 산정할 수 있는 모형을 개발하였다. 본 연구에서 개발된 모형을 적용한 결과 개별 단일사상 기반의 최적화 기법에 비해 다중 강우-유출 자료를 Pooling하여 매개변수를 산정하는 계층적 Bayesian 모형에서 BIC 결과 및 다수의 통계적 지표를 통해 모형의 우수성을 확인할 수 있었다. 더불어 홍수량에 따른 유역특성인자 매개변수 반응에 대한 관계규명을 기반으로 향후 댐 설계 또는 PMF 산정시 본 연구의 결과가 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Ayalew, T.B., Krajewski, W.F., and Mantilla, R. (2015). "Analyzing the effects of excess rainfall properties on the scaling structure of peak discharges: Insights from a mesoscale river basin." Water Resources Research. Vol. 51, No. 6, pp. 3900-3921. https://doi.org/10.1002/2014WR016258
  2. Bell, F.C., and Kar, S.O. (1969). "Characteristic response times in design flood estimation." Journal of Hydrology, Vol. 8, No. 2, pp. 173-196. https://doi.org/10.1016/0022-1694(69)90120-6
  3. Chow, V.T. (1962). Hydrologic determination of waterway areas for the design of drainage structures in small drainage basins. University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station.
  4. Clark, C.O. (1945). "Storage, and the unit hydrograph." Transcripts American Society of Civil Engineers, Vol. 69, No. 9, pp. 1333-1360.
  5. Disley, T., Gharabaghi, B., Mahboubi, A.A., and McBean, E.A. (2015). "Predictive equation for longitudinal dispersion coefficient." Hydrological processes, Vol. 29, No. 2, pp. 161-172. https://doi.org/10.1002/hyp.10139
  6. Ford, D.T., Morris, E.C., and Feldman, A.D. (1980). "Corps of engineers' experience with automatic calibration of a precipitationrunoff model." IFAC Proceedings, Vol. 13, No. 3, pp. 467-476. https://doi.org/10.1016/S1474-6670(17)65103-6
  7. Garg, S.K. (2001). Irrigation engineering and hydraulic structures; For civil engineering degree students: AMIE (Section B) exams UPSC and other state service competitions: and for professionals. Khanna Publishers, India.
  8. Gazendam, E., Gharabaghi, B., Ackerman, J.D., and Whiteley, H. (2016). "Integrative neural networks models for stream assessment in restoration projects." Journal of Hydrology, Vol. 536, pp. 339-350. https://doi.org/10.1016/j.jhydrol.2016.02.057
  9. Grimaldi, S., Petroselli, A., Arcangeletti, E., and Nardi, F. (2013a) "Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling." Journal of Hydrology, Vol. 487, pp. 39-47. https://doi.org/10.1016/j.jhydrol.2013.02.023
  10. Grimaldi, S., Petroselli, A., and Romano, N. (2013b). "Green-ampt curve-number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins." Hydrological Processes, Vol. 27, No. 8, pp. 1253-1264. https://doi.org/10.1002/hyp.9303
  11. Haktanir, T., and Sezen, N. (1990) "Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia." Hydrologic Science Journal, Vol. 35, No. 2, pp. 167-184. https://doi.org/10.1080/02626669009492416
  12. Hydrologic Engineering Center (HEC) (1990). HEC-1 flood hydrograph package, user's manual. US Army Corps of Engineers, Water Resources Support Center, Hydrologic Engineering Center.
  13. Kennedy, R.J., and Watt, W.E. (1967). "The relationship between lag time and the physical characteristics of drainage basins in southern Ontario." International Association of Scientific Hydrology, Vol. 85, pp. 867-874.
  14. Kilduff, J., Daviero, J., and Ruswick, K. (2014). Development of regional unit hydrographs for application to ungaged watersheds in New York. Rensselaer Polytechnic Institute, N.Y., U.S.
  15. Kim, J.-Y., Kwon, H.-H., and Lim, J.-Y. (2014). "Development of hierarchical bayesian spatial regional frequency analysis model considering geographical characteristics." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 469-482. https://doi.org/10.3741/JKWRA.2014.47.5.469
  16. Kirpich, Z.P. (1940) "Time of concentration of small agricultural watersheds." Journal of Civil Engineering, Vol. 10, No. 6. p. 362.
  17. Kwon, H.-H., Kim, J.-K., Lee, J.S., and Na, B.-K. (2012). "Uncertainty assessment of single event rainfall-runoff model using bayesian model." Journal of Korea Water Resources Association, Vol. 45, No. 5, pp. 505-516. https://doi.org/10.3741/JKWRA.2012.45.5.505
  18. Kwon, H.-H., Kim, J.-Y., Kim, O.-K., and Lee, J.-J. (2013). "A development of regional frequency model based on hierarchical bayesian model." Journal of Korea Water Resources Association, Vol. 46, No. 1, pp. 13-24. https://doi.org/10.3741/JKWRA.2013.46.1.13
  19. Liu, Y., Yang, W., Yu, Z., Lung, I., and Gharabaghi, B. (2015). "Estimating sediment yield from upland and channel erosion at a watershed scale using SWAT." Water resources management, Vol. 29, No. 5, pp. 1399-1412. https://doi.org/10.1007/s11269-014-0729-5
  20. McCuen, R.H., Wong, S.L., and Rawls, W.J. (1984). "Estimating urban time of concentration." Journal Hydraulic Engineering, Vol. 110, No. 7, pp. 887-904. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:7(887)
  21. Ministry of Environment (ME) (2018). Guideline of design flood estimation.
  22. Ministry of Land, Infrastructure and Transport (MLIT) (2012). Guideline of design flood estimation.
  23. Nardi, F., Annis, A., and Biscarini, C. (2015). "On the impact of urbanization on flood hydrology of small ungauged basins: the case study of the Tiber river tributary network within the city of Rome." Journal of Flood Risk Management, Vol. 11, pp. 594-603.
  24. Natural Resource Conservation Service (NRCS) (1972). National engineering handbook, section 4, hydrology. U.S. Department of Agriculture, Washington, D.C., U.S.
  25. Natural Resource Conservation Service (NRCS) (1986). Urban hydrology for small watersheds. US Department of Agriculture, Natural Resource Conservation Service, Conservation Engineering Division.
  26. Perdikaris, J., Gharabaghi, B., and Rudra, R. (2018). "Reference time of concentration estimation for ungauged catchments." Earth Science Research, Vol. 7, No. 2, pp. 58-73. https://doi.org/10.5539/esr.v7n2p58
  27. Petroselli, A., and Grimaldi, S. (2015). "Design hydrograph estimation in small and fully ungauged basins: A preliminary assessment of the EBA4SUB framework." Journal of Flood Risk Management, Vol. 11, pp. 197-210.
  28. Schwarz, G.E. (1978). "Estimating the dimension of a model." Annals of Statistics, Vol. 6, No. 2, pp. 461-464. https://doi.org/10.1214/aos/1176344136
  29. Seyam, M., and Othman, F. (2014). "The influence of accurate lag time estimation on the performance of stream flow data-driven based models." Water Resources Management, Vol. 28, No. 9, pp. 2583-2597. https://doi.org/10.1007/s11269-014-0628-9
  30. Watt, W.E., and Chow, K.C. (1985). "A general expression for basin lag time." Canadian Journal of Civil Engineering, Vol. 12, pp. 294-300. https://doi.org/10.1139/l85-031
  31. Williams, G.B. (1922). "Flood discharges and the dimensions of spillways in India." Engineering, Vol. 134, No. 9, pp. 321-322.