DOI QR코드

DOI QR Code

Growth Evaluation of Lipid Production Microalgae Scenedesmus obliquus using Raman Spectroscopy

라만 분광법을 이용한 지질생산 미세조류 Scenedesmus obliquus 성장 평가

  • Yoo, Yong Jin (Department of Physics and Nano-science, Sun Moon University) ;
  • Lee, Geon Woo (Department of Physics and Nano-science, Sun Moon University) ;
  • Baek, Dong Hyun (Center for Next-Generation Semiconductor Technology, Sun Moon University) ;
  • Lee, Jin Woo (Department of Food Science, Sun Moon University) ;
  • Kim, Ho Seob (Department of Physics and Nano-science, Sun Moon University)
  • 유용진 (선문대학교 나노과학과) ;
  • 이건우 (선문대학교 나노과학과) ;
  • 백동현 (선문대학교 차세대반도체기술연구소) ;
  • 김진우 (선문대학교 식품과학과) ;
  • 김호섭 (선문대학교 나노과학과)
  • Received : 2020.02.07
  • Accepted : 2020.05.08
  • Published : 2020.05.31

Abstract

Biodiesel produced using microorganisms, which are recognized as the third-generation biomass, is among the various known renewable energy sources that can replace fossil fuels used in conventional transportation. Scenedesmus obliquus has been identified as an excellent species for biodiesel production, as it grows faster and can accumulate up to 40-50 percent of the dry cell weight. Enhancing production using S. obliquus requires measuring the cell mass for controlling the cultivation process. In the current study, S. obliquus was cultured for 75 days, and growth changes of the microalgae were measured by absorbance, microscopic imaging, and Raman spectroscopy. Between days 60 to 75 of culture, the change in absorbance was observed to be less than 3%, whereas the number of microalgae observed microscopically was more than three times higher. Moreover, the Raman spectroscopy results showed three strong peak values of β-carotene at 997 cm-1, 1148 cm-1, and 1515 cm-1, with peak values of β-carotene showing greater than 3-fold increase during the culture period. Therefore, we predict that application of Raman spectroscopy will help in identifying the growth elements and growth degree in microalgae culture during increased biomass production.

최근 3세대 바이오매스라고 알려진 미세조류를 이용하여 생산되는 바이오디젤은 기존의 교통수단에 사용되는 화석연료를 대체할 수 있는 유일한 재생에너지로 알려져 있다. 미세조류 중에서도 Scenedesmus obliquus는 다른 미세조류 대비 성장이 빠르고 건조세포무게 대비 지질을 40-50 % 축적이 가능하여 바이오디젤 생산에 있어 야외 및 대규모 재배에 적합한 지질생산 우수 종으로 알려져 있다. 미세조류를 이용한 바이오디젤 생산을 위해서는 높은 바이오매스 생산량 확보가 선행되어야 하며 배양공정의 제어를 위해 효과적인 세포 질량 측정 및 분석이 필요하다. 본 연구는 S. obliquus를 75일 동안 배양하며 흡광도, 현미경 이미지, 라만 분광법 등으로 미세조류의 성장 변화를 측정하고, 측정된 값들에 대한 상관관계를 관찰하였다. 배양 60일과 배양 75일 기간에, 흡광도의 변화량이 3 % 미만인 반면, 현미경으로 관찰한 미세조류의 숫자는 3배 이상 증가하였다. 또한, 라만 분광법으로 측정된 결과에서는 β-카로틴에 해당하는 997 cm-1, 1148 cm-1, 1515 cm-1의 강한 피크값이 측정되었으며, 배양 기간 동안 β-카로틴의 피크값은 초기보다 3배 이상 증가하는 것이 관찰되었다. 따라서 라만 분광법을 이용하면 미세조류 배양에서 세포 내 성장 물질과 성장 정도를 알아내어 높은 바이오매스를 생산할 수 있을 것이다.

Keywords

References

  1. Ministry of Environment, Environmental Statistics Yearbook 2018, Statistical publications, Ministry of Environment, Korea, pp.129.
  2. Ministry of Environment, Environmental Statistics Yearbook 1999, Statistical publications, Ministry of Environment, Korea, pp.106.
  3. C. D. Kang, T. H. Park, S. J. Sim, "Biological $CO_2$ Fixation to antioxidant carotenoids by hotosynthesis Using the green microalga Haematococcus pluvialis.". Korean Chemical Engineering Research, Vol. 44, No. 1, pp.46-51, Feb. 2006.
  4. B. H. Jo, H. J. Cha, "Biodiesel production using microalgal marine biomass.", KSBB Journal, Vol. 25, No. 2, pp.109-115, Apr. 2010.
  5. J. J. Kim, H. S. Kim, J. S. Kang, S. P. Lee, "An analysis of biodisels technology and metering using microalgae.", Korea Technology Innovation Society, pp.5-11, May. 2014.
  6. D. U. Santos-Ballardo, S. Rossi, V.Hernandez, R. V. Gomez, M. D. C Rendon-Unceta,, J.C. Corrales. "A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture.", Aquaculture, Vol. 448, No. 1, pp.87-92, Nov. 2015. DOI: https://doi.org/10.1016/j.aquaculture.2015.05.044
  7. X. Wei, D. Jie, J. J. Cuello, D. J. Johnson, Z. Qiu, and Y. He, "Microalgal detection by Raman microspectroscopy.", Trends in Analytical Chemistry Vol. 53, pp.33-40, Jan. 2014. DOI: https://doi.org/10.1016/j.trac.2013.09.012
  8. Y. Shao, H. Fang, H. Zhou, Q. Wang, Y. Zhu, and Y. He, "Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy.", Biotechnology for Biofuels, Vol. 10, p. 300, Dec 2017. DOI: http://doi.org/10.1186/s13068-017-0977-8
  9. G. B. Jung, "Biomedical application of raman spectroscopy.". New Physics: Sae Mulli, Vol. 67, No. 6, pp. 665-678, Jun. 2017. DOI: http://dx.doi.org/10.3938/NPSM.67.665
  10. J. H. No, T. K. Lee, "Rapid bacterial identification using raman spectroscopy.". Korean Journal of Microbiology, Vol. 53, No. 2, pp.71-78, Jun. 2017. DOI: https://doi.org/10.7845/kjm.2017.7034
  11. S. K. Kim, D. Y. Ko, J. K. Park, A. R. Park, S. J. Baek, "A hierarchical cluster tree based fast searching algorithm for raman spectroscopic identification.". Journal of the Korea Academia-Industrial cooperation Society, Vol. 20, No. 3, pp.562-569, Mar. 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.3.562
  12. R. J. Swain, and M. M. Stevens, "Raman microspectroscopy for non-invasive biochemical analysis of single cells.", Biochemical Society Transactions Vol. 35, No. 3, pp.544-549, Jun. 2007. DOI: https://doi.org/10.1042/BST0350544
  13. S. Y. Kim, S. J. Jung, H. S. Kim, D. H. Gam, J. W. Kim, "Optimization of extraction conditions for astaxanthin from Haematococcus pluvialis.", Korean Society for Biotechnology and Bioengineering Journal Vol. 34, No. 4, pp.346-351, Dec. 2019. DOI: http://dx.doi.org/10.7841/ksbbj.2019.34.4.346
  14. S. J. Joo, H. J. Hwang, S. Zhang, S. J. Hwang, "Effects of light condition in the continuous mass cultivation of microalgae Scenedesmus dimorphus.", Korean Society of Water and Wastewater, Vol. 29, No. 3, pp.319-323, Jun. 2015. DOI: https://doi.org/10.11001/jksww.2015.29.3.319
  15. S. J. Joo, S. Zhang, K. J. Choi, S. M. Lee, S. J. Hwang, "Effects of sodium bicarbonate as an inorganic carbon source on the growth of Scenedesmus dimorphus.", Journal of Korean Society of Wastewater, Vol. 28, No. 5, pp.555-560, Oct. 2014 DOI: http://dx.doi.org/10.11001/jksww.2014.28.5.555
  16. Y. Y. Huang, C. M. Beal, W. W. Cai, R. S. Ruoff, E. M. Terentjev, "Micro-raman spectroscopy of algae: composition analysis and fluorescence background behavior.", Biotechnol Bioeng, Vol. 105, No. 5, pp.889-898, Apr. 2010. DOI: https://doi.org/10.1002/bit.22617
  17. O. D. Paraschuk, N. N. Brandt, O. O. Brovko, A. Y. Chikishev, "Optimization of the rolling-circle filter for raman background subtraction.", Applied Spectroscopy, Vol. 60, No. 3, pp.288-293, Mar. 2006. DOI: https://doi.org/10.1366/000370206776342553
  18. I. Ruisanchez, P. M. Ramos, "Noise and background removal in raman spectra of ancient pigments using wavelet transform.", Journal of Raman Spectroscopy, Vol. 36, No. 9, pp.848-856, Sep. 2005. DOI: https://doi.org/10.1002/jrs.1370