DOI QR코드

DOI QR Code

Backbone NMR Assignments of WW2 domain from human AIP4

  • Seo, Min-Duk (Department of Molecular Science and Technology, Ajou University)
  • Received : 2020.06.10
  • Accepted : 2020.06.17
  • Published : 2020.06.20

Abstract

WW domains are small protein modules consisting of three-stranded antiparallel β-sheet, and involved in the protein-protein interaction for various biological systems. We overexpressed and purified WW2 domain from human AIP4/Itch (a member of Nedd4 family) using a pH/temperature dependent cleavage system. The backbone assignments of WW2 domain were completed, and secondary structure was predicted. Furthermore, backbone flexibility of WW2 domain was determined by 1H-15N heteronuclear NOE and amide hydrogen exchange experiments. The structural information would contribute to the structural determination of WW2 domain as well as the interaction study of WW2 domain with various binding partners.

Keywords

References

  1. J. Huibregtse, M. Scheffner, S. Beaudenon, and P. Howley, Proc. Nati. Acad. Sci. 92, 2563 (1995) https://doi.org/10.1073/pnas.92.7.2563
  2. R. J. Ingham, G. Gish, and T. Pawson, Oncogene 23, 1972 (2004) https://doi.org/10.1038/sj.onc.1207436
  3. K. F. Harvey and S. Kumar, Trends in Cell Biology 9, 166 (1999) https://doi.org/10.1016/S0962-8924(99)01541-X
  4. H. I. Chen, A. Einbond, S. J. Kwak, H. Linn, E. Koepf, S. Peterson, J. W. Kelly, and M. Sudol, J. Biol. Chem. 272, 17070 (1997) https://doi.org/10.1074/jbc.272.27.17070
  5. J. L. Ilsley, M. Sudol, S. and J. Winder, Cell. Signal. 14, 183 (2002) https://doi.org/10.1016/S0898-6568(01)00236-4
  6. M. Sudo, Prog. Biophys. Mol. Biol. 65, 113 (1996) https://doi.org/10.1016/S0079-6107(96)00008-9
  7. M. J. Macias, M. Hyvonen, E. Baraldi, J. Schultz, M. Sudol, M. Saraste, and H. Oschkinat, Nature 382, 646 (1996) https://doi.org/10.1038/382646a0
  8. M. T. Bedford, D. Sarbassova, J. Xu, P. Leder, and M. B. Yaffe, J. Biol. Chem. 275, 10359 (2000) https://doi.org/10.1074/jbc.275.14.10359
  9. X. Espanel and M. Sudol, J. Biol. Chem. 274, 17284 (1999) https://doi.org/10.1074/jbc.274.24.17284
  10. M. Sudol and T. Hunter, Cell 103, 1001 (2000) https://doi.org/10.1016/S0092-8674(00)00203-8
  11. M. J. Macias, V. Gervais, C. Civera, and H. Oschkinat, Nat. Struct. Biol. 7, 375 (2000) https://doi.org/10.1038/75144
  12. N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, J. D. Forman-Kay, and L. E. Kay, Biochemistry 33, 5984 (1994) https://doi.org/10.1021/bi00185a040
  13. Y. H. Jeon, T. Yamazaki, T. Otomo, A. Ishihama, and Y. Kyogoku, J. Mol. Biol. 267, 953 (1997) https://doi.org/10.1006/jmbi.1997.0902
  14. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995) https://doi.org/10.1007/BF00197809
  15. B. A. Johnson and R. A. Blevins, J. Biomol. NMR. 4, 603 (1994) https://doi.org/10.1007/BF00404272
  16. W. J. Metzler, K. L. Constantine, M. S. Friedrichs, A. J. Bell, E. G. Ernst, T. B. Lavoie, and L. Muller, Biochemistry 32, 6201 (1993)
  17. D. S. Wishart and B. D. Sykes, J. Biomol. NMR 4, 171 (1994) https://doi.org/10.1007/BF00175245
  18. G. Cornilescu, F. Dealglio, and A. Bax, J. Biomol. NMR 13, 289 (1999) https://doi.org/10.1023/A:1008392405740