DOI QR코드

DOI QR Code

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction

NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향

  • Park, Ji Hye (Department of Chemical Engineering Education, Chungnam National University) ;
  • Cho, Gwang Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Hwang, Ra Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Baek, Jeong Hun (Energy Conversion & Storage Materials Laboratory, Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 화학공학교육과) ;
  • 조광희 (충남대학교 에너지과학기술대학원) ;
  • 황라현 (충남대학교 에너지과학기술대학원) ;
  • 백정훈 (한국에너지기술연구원 변환저장소재연구실) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2020.06.06
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

아산화질소(N2O)는 6대 온실가스 중 하나로 이산화탄소(CO2)의 310배에 해당하는 지구온난화지수(global warming potential, GWP)를 나타내어 N2O를 저감하는 것은 필수적이다. 선택적 촉매환원법(selective catalytic reduction, SCR)은 대기오염 물질의 하나인 NOx의 제거를 위해 암모니아를 환원제로 사용하여 무해한 N2 및 H2O로 전환하는 기술로 높은 탈질효율을 나타낸다. 본 연구에서는 NH3-SCR반응에서 스팀 처리된 Fe-BEA 촉매가 활성에 미치는 영향을 조사하기 위하여 Fe-BEA 촉매는 Fe를 이온교환하기 전, 고정층 반응기로 100 ℃에서 2 h 동안 스팀 처리 되었다. 제조된 촉매의 NH3-SCR반응 테스트는 고정층 반응기로 WHSV = 180 h-1, 370 ~ 400 ℃에서 수행되었다. 100 ℃에서 스팀 처리된 Fe-BEA(100) 촉매가 370 ~ 390℃에서 Fe-BEA 촉매보다 다소 높은 활성을 나타내었다. NH3-SCR 활성에 영향을 주는 원인을 파악하기 위하여 제조된 촉매는 BET, ICP, NH3-TPD, H2-TPR, 27Al MAS NMR을 통하여 특성분석 되었다. H2-TPR결과를 통해 Fe-BEA(100) 촉매가 Fe-BEA 촉매 보다 isolated Fe3+의 환원이 더 많이 일어난 것을 확인하였으며, 스팀 처리는 활성종인 isolated Fe3+의 양을 늘려주어 활성이 증가한 것으로 판단된다.

Keywords

References

  1. Rani, B., Singh, U., Chuhan, A. K., Sharma, D., and Maheshwari, R., "Photochemical Smog Pollution and Its Mitigation Measures," J. Adv. Sci. Res., 2(4), 28-33 (2011).
  2. Chang, K. S., "Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide," Appl. Chem. Eng., 19(1), 17-26 (2008).
  3. Kaiser, J., Hastings, M. G., Houlton, B. Z., Rockmann, T., and Sigman, D. M., "Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of $N_2O$," Anal. Chem., 79(2), 599-607 (2007). https://doi.org/10.1021/ac061022s
  4. Maniak, G., Stelmachowski, P., Stanek, J. J., Kotarba, A., and Sojka, Z., "Catalytic Properties in $N_2O$ Decomposition of Mixed Cobalt-Iron Spinels," Catal. Commun., 15(1), 127-131 (2011). https://doi.org/10.1016/j.catcom.2011.08.027
  5. Yang, S., Xiong, S., Liao, Y., Xiao, X., Qi, F., Peng, Y., Fu, Y., Shan, W., and Li, J., "Mechanism of $N_2O$ Formation During the Low-Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn-Fe Spinel," Environ. Sci. Technol., 48(17), 10354-10362 (2014). https://doi.org/10.1021/es502585s
  6. Baek, J. H., Lee, S. M., Park, J. H., Jeong, J. M., Hwang, R. H., Ko, C. H., Jeon, S. G., and Yi, K. B., "Effects of Steam Introduction on Deactivation of Fe-BEA Catalyst in $NH_3$-SCR of $N_2O$ and NO," J. Ind. Eng. Chem., 48, 194-201 (2017). https://doi.org/10.1016/j.jiec.2017.01.002
  7. Kwon, D. W., and Hong, S. C., "Selective Catalytic Reduction (SCR) Technology Trends for the Nitrogen Oxide Removal of Exhaust Gas," Korea Ind. Chem. News, 19(5), 12-24 (2016).
  8. Zhang, X., Shen, Q., He, C., Ma, C., Cheng, J., and Hao, Z., "$N_2O$ Catalytic Reduction by $NH_3$ over Fe-Zeolites: Effective Removal and Active Site," Catal. Commun., 18, 151-155 (2012). https://doi.org/10.1016/j.catcom.2011.11.029
  9. Mauvezin, M., Delahay, G., Kisslich, F., Coq, B., and Kieger, S., "Catalytic Reduction of $N_2O$ by $NH_3$ in Presence of Oxygen Using Fe-Exchanged Zeolites," Catal. Lett., 62(1), 41-44 (1999). https://doi.org/10.1023/A:1019078401694
  10. Xia, Y., Zhan, W., Guo, Y., Guo, Y., and Lu, G., "Fe-Beta Zeolite for Selective Catalytic Reduction of $NO_x$ with $NH_3$: Influence of Fe Content," Chin. J. Catal., 37(12), 2069-2078 (2016). https://doi.org/10.1016/S1872-2067(16)62534-2
  11. Maier, S. M., Jentys, A., and Lercher, J. A., "Steaming of Zeolite BEA and Its Effect on Acidity: A Comparative NMR and IR Spectroscopic Study," J. Phys. Chem. C, 115(16), 8005-8013 (2011). https://doi.org/10.1021/jp108338g
  12. Baran, R., Millot, Y., Onfroy, T., Krafft, J. M., and Dzwigaj, S., "Influence of the Nitric Acid Treatment on Al Removal, Framework Composition and Acidity of BEA Zeolite Investigated by XRD, FTIR and NMR," Micropor. Mesopor. Mat., 163, 122-130 (2012). https://doi.org/10.1016/j.micromeso.2012.06.055
  13. Hajjar, R., Millot, Y., Man, P. P., Che, M., and Dzwigaj, S., "Two Kinds of Framework Al Sites Studied in BEA Zeolite by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, NMR Techniques, and V Probe," J. Phys. Chem. C, 112(51), 20167-20175 (2008). https://doi.org/10.1021/jp808356q
  14. Van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P., Van Bekkum, H., and Kentgens, A. P. M., "Stepwise Dealumination of Zeolite ${\beta}eta$ at Specific T-Sites Observed with $^{27}Al$ MAS and $^{27}Al$ MQ MAS NMR," J. Am. Chem. Soc., 122(51), 12842-12847 (2000). https://doi.org/10.1021/ja002689d
  15. Li, J., Liu, H., An, T., Yue, Y., and Bao, X. "Carboxylic Acids to Butyl Esters over Dealuminated-Realuminated Beta Zeolites for Removing Organic Acids from Bio-Oils," RSC Adv., 7(54), 33714-33725 (2017). https://doi.org/10.1039/C7RA05298G