DOI QR코드

DOI QR Code

Membrane-based Direct Air Capture Technologies

분리막을 이용한 공기 중 이산화탄소 제거 기술

  • Received : 2020.06.11
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

전 세계 화석 연료 사용이 지속적으로 증가함에 따라 공기 중 이산화탄소(CO2) 농도가 수 세기에 걸쳐 증가하고 있다. 대기로의 CO2 배출을 줄이기 위한 방법으로, 주요 배출원인 발전소와 공장에 적용할 수 있는 이산화탄소 포집 및 저장(carbon capture and sequestration, CCS) 기술이 개발되고 있다. 기후 변화 완화 정책에 따라 negative emission 기술로 언급되는 공기 중 CO2 직접 포집 기술(direct air capture, DAC)은 CO2 농도가 0.04%로 매우 낮기 때문에 기존의 CCS 기술에 적용된 기술과 달리 흡착제를 이용한 저농도 CO2 포집 연구에 집중되어 있다. DAC 분야는 주로 CO2의 흡착을 이용한 습식 흡착제, 건식 흡착제, 아민 기능화된 소재, 이온교환 수지 등이 연구되었다. 흡착제 기반 기술은 흡착제 재생에 따른 고온 열처리 공정이 필요하기 때문에 추가적인 에너지 소모가 없는 분리막 기반의 공기 중 CO2 포집 기술의 잠재력이 크다. 분리막은 특히 실내 공기 CO2 저감 환기 시스템 및 실내용 스마트팜(smart farm) 시스템의 연속적인 CO2 공급에 사용될 수 있을 것으로 기대된다. CO2 처리 기술은 기후 변화를 완화하기 위한 수단으로 개발이 지속되어야 하며 효율적인 공정 설계와 소재 성능 향상을 통해 공기 중 CO2 포집의 효율을 높일 수 있을 것이다.

Keywords

References

  1. Core Writing Team, R. K. Pachauri, and L. A. Meyer (eds.), "Climate change 2014 synthesis report; contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change", Geneva, Switzerland (2014).
  2. "https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html", June 7 (2020).
  3. V. Masson-Delmotte, P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, and X. Zhou (eds.)., "Global warming of $1.5^{\circ}C$. An ipcc special report on the impacts of global warming of $1.5^{\circ}C$ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty" (2018).
  4. C. W. Jones, "$CO_2$ capture from dilute gases as a component of modern global carbon management", Annu. Rev. Chem. Biomol. Eng., 2, 31 (2011). https://doi.org/10.1146/annurev-chembioeng-061010-114252
  5. B. A. Oyenekan and G. T. Rochelle, "Alternative stripper configurations for $CO_2$ capture by aqueous amines", AlChE J., 53, 3144 (2007). https://doi.org/10.1002/aic.11316
  6. T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: An opportunity for membranes", J. Membr. Sci., 359, 126 (2010). https://doi.org/10.1016/j.memsci.2009.10.041
  7. D. J. Kim and S. Y. Nam, "Research and development trends of polyimide based material for gas separation", Membr. J., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  8. S. J. Jeong, J.-g. Yeo, M. H. Han, and C. H. Cho, "A study on permeation of $CO_2-N_2-O_2$ mixed gases through a nay zeolite membrane under permeate evacuation mode", Membr. J., 23, 352 (2013).
  9. The National Academies of Sciences, and Medicine, "Negative emissions technologies and reliable sequestration: A research agenda", The National Academies Press, Washington DC (2018).
  10. K. S. Lackner, "Capture of carbon dioxide from ambient air", Eur. Phys. J. Special Topics., 176, 93 (2009). https://doi.org/10.1140/epjst/e2009-01150-3
  11. D. W. Keith, "Why capture $CO_2$ from the atmosphere?", Science, 325, 1654 (2009). https://doi.org/10.1126/science.1175680
  12. J. Bao, W.-H. Lu, J. Zhao, and X. T. Bi, "Greenhouses for $CO_2$ sequestration from atmosphere", Carbon Resour. Convers., 1, 183 (2018). https://doi.org/10.1016/j.crcon.2018.08.002
  13. P. Batog and M. Badura, "Dynamic of changes in carbon dioxide concentration in bedrooms", Procedia Eng., 57, 175 (2013). https://doi.org/10.1016/j.proeng.2013.04.025
  14. F. Zeman, "Energy and material balance of $CO_2$ capture from ambient air", Environ. Sci. Technol., 41, 7558 (2007). https://doi.org/10.1021/es070874m
  15. F. S. Zeman and K. S. Lackner, "Capturing carbon dioxide directly from the atmosphere", World Resour. Rev., 16, 157 (2004).
  16. N. R. Stuckert and R. T. Yang, "$CO_2$ capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15", Environ. Sci. Technol., 45, 10257 (2011). https://doi.org/10.1021/es202647a
  17. J. V. Veselovskaya, V. S. Derevschikov, T. Y. Kardash, O. A. Stonkus, T. A. Trubitsina, and A. G. Okunev, "Direct $CO_2$ capture from ambient air using $K_2CO_3/Al_2O_3$ composite sorbent", Int. J. Greenh. Gas Con., 17, 332 (2013). https://doi.org/10.1016/j.ijggc.2013.05.006
  18. C. Gebald, J. A. Wurzbacher, P. Tingaut, T. Zimmermann, and A. Steinfeld, "Amine-based nanofibrillated cellulose as adsorbent for $CO_2$ capture from air", Environ. Sci. Technol., 45, 9101 (2011). https://doi.org/10.1021/es202223p
  19. T. Wang, K. S. Lackner, and A. Wright, "Moisture swing sorbent for carbon dioxide capture from ambient air", Environ. Sci. Technol., 45, 6670 (2011). https://doi.org/10.1021/es201180v
  20. T. Wang, C. Hou, K. Ge, K. S. Lackner, X. Shi, J. Liu, M. Fang, and Z. Luo, "Spontaneous cooling absorption of $CO_2$ by a polymeric ionic liquid for direct air capture", J. Phys. Chem. Lett., 8, 3986 (2017). https://doi.org/10.1021/acs.jpclett.7b01726
  21. M. S. A. Rahaman, L. Zhang, L.-H. Cheng, X.-H. Xu, and H.-L. Chen, "Capturing carbon dioxide from air using a fixed carrier facilitated transport membrane", RSC Adv., 2 (2012).
  22. Y.-T. Zhang, L. Zhang, H.-L. Chen, and H.-M. Zhang, "Selective separation of low concentration $CO_2$ using hydrogel immobilized ca enzyme based hollow fiber membrane reactors", Chem. Eng. Sci., 65, 3199 (2010). https://doi.org/10.1016/j.ces.2010.02.010
  23. M. D. Eisaman, L. Alvarado, D. Larner, P. Wang, B. Garg, and K. A. Littau, "$CO_2$ separation using bipolar membrane electrodialysis", Energy Environ. Sci., 4, 1319 (2011). https://doi.org/10.1039/C0EE00303D
  24. A. B. Wright and E. J. Peters, "Air collector with functionalized ion exchange membrane for capturing ambient $CO_2$", US Patent 7,993,432 B2, August 9 (2011).
  25. A. B. Wright, K. S. Lackner, and U. Ginster, "Method and apparatus for extracting carbon dioxide from air", US 8,337,589 B2, December 25 (2012).
  26. J. H. Lim, C. S. Lee, H. E. Kim, M. W. Bae, Y. G. Mo, and S. Y. Ha, "Separation and simulation for carbon dioxide from flaring gas using polysulfone hollow fiber membrane", Membr. J., 25, 99 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.99
  27. A. Goeppert, M. Czaun, G. K. Surya Prakash, and G. A. Olah, "Air as the renewable carbon source of the future: An overview of $CO_2$ capture from the atmosphere", Energy Environ. Sci., 5 (2012).
  28. R. B. Polak and M. Steinberg, "Carbon dioxide removal systems", US Patent 13/256,831, January 5 (2012).
  29. D. W. Keith, G. Holmes, D. St. Angelo, and K. Heidel, "A process for capturing $CO_2$ from the atmosphere", Joule., 2, 1573 (2018). https://doi.org/10.1016/j.joule.2018.05.006