DOI QR코드

DOI QR Code

Membrane Performance and Chemical Instability of 1,3,5-Benzenetricarbonyl Trichloride

1,3,5-Benzenetricarbonyl Trichloride의 화학적 불안정성과 분리막 성능

  • 박철호 (한국에너지기술연구원 제주글로벌연구센터) ;
  • 김찬수 (한국에너지기술연구원 제주글로벌연구센터) ;
  • 심준목 (한국에너지기술연구원 미세먼지연구단) ;
  • 박현설 (한국에너지기술연구원 미세먼지연구단) ;
  • 조윤행 (한국에너지기술연구원 미세먼지연구단)
  • Received : 2020.04.20
  • Accepted : 2020.05.18
  • Published : 2020.06.30

Abstract

1,3,5-benzenetricarbonyl trichloride is a chemical substance in which three acyl chlorides are located at 1,3,5 position in the benzene ring, and is an important chemical for the area where the good physical and chemical properties are required through high degree of crosslinking. In particular, it is possible to form a three-dimensional structure having a certain pore size, it is used in various separation and purification fields. However, the high reactivity of acyl chloride has the advantage of a fast reaction rate, which means that it is difficult to control chemically to have a certain performance in other aspects. Therefore, in this study, we observed how the chemical change of 1,3,5-benzenetricarbonyl trichloride affected the membrane performance.

1,3,5-benzenetricarbonyl trichloride는 3개의 아실클로라이드가 벤젠고리 1,3,5에 위치한 화학물질로, 높은 가교도를 통한 물리적·화학적 특성을 요구하는 곳에 사용하는 중요한 화학물이다. 특히 일정 기공크기를 갖고 있는 3차원 구조체 형성이 가능하여, 다양한 분리 정제 분야에 사용되고 있다. 하지만 아실클로라이드의 높은 반응성은 반응속도가 빠른 장점을 갖고 있지만, 다른 측면에서는 일정한 성능을 가질 수 있도록 화학적 제어가 어려운 점도 있다. 따라서 본 연구에서는 1,3,5-benzenetricarbonyl trichloride의 화학적 변화가 어떻게 분리막 성능에 영향을 주는지 관찰하였다.

Keywords

References

  1. R. J. Ouellette and J. D. Rawn, 21 - Carboxylic Acids, "Organic Chemistry (Second Edition)", in: R. J. Ouellette, J. D. Rawn (Eds.), pp. 625, Academic Press (2018).
  2. S. R. Sandler and W. Karo, 11 - AMIDES from S. R. Sandler, and W. Karo, "Organic Functional Group Preparations, Vol. I (2rd ed) (New York, 1983), 315ff, by permission of Academic Press, Inc, "Sourcebook of Advanced Organic Laboratory Preparations", in: S. R. Sandler and W. Karo (Eds.), pp. 92, Academic Press, Boston (1992).
  3. B. Yuan, P. Li, H. Sun, S. Zhao, P. Li, H. Sun, and Q. J. Niu, "Novel non-trimesoyl chloride based polyamide membrane with significantly reduced Ca2+ surface deposition density", J. Membr. Sci., 578, 251 (2019). https://doi.org/10.1016/j.memsci.2019.02.053
  4. P. C. Ho, "Change of surface morphology with the spreading rate of organic solution during interfacial polymerization for polyamide-based thin film composite membrane manufacturing process", Membr. J., 27, 506 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.506
  5. C. H. Park, "Viscosity effect of organic solvent on the fabrication of polyamide thin film composite membrane via interfacial polymerization", Polymer (Korea), 40, 954 (2016). https://doi.org/10.7317/pk.2016.40.6.954
  6. C. H. Park, H. Bae, W. Choi, K. Lee, D.-g. Oh, J. Lee, and J.-H. Lee, "Thin film composite membrane prepared by interfacial polymerization as an ion exchange membrane for salinity gradient power", J. Ind. Eng. Chem., 59, 362 (2018). https://doi.org/10.1016/j.jiec.2017.10.044
  7. W. Zhao, L. Xia, and X. Liu, "Covalent organic frameworks (COFs): Perspectives of industrialization", Cryst. Eng. Comm., 20, 1613 (2018). https://doi.org/10.1039/C7CE02079A
  8. C. H. Park, H. Bae, K.-S. Ryu, Y.-H. Nam, D.-J. Kim, G.-S. Lee, J.-J. Lee, S. I. Yoo, and B. Kim, "Foldable multiple-energies harvester consisting of a thin ion-exchange membrane prepared by a two-step interfacial polymerization", Desalination, 476, 114242 (2020). https://doi.org/10.1016/j.desal.2019.114242
  9. J. Zhang, J. H. Atherton, and P. R. Unwin, "Investigation of the kinetics and mechanism of acid chloride hydrolysis in an oil/water system using microelectrochemical measurements at expanding droplets (MEMED)", Langmuir, 20, 1864 (2004). https://doi.org/10.1021/la0355951
  10. J.-G. Kim and D. O. Jang, "Synthesis of symmetrical carboxylic acid anhydrides from acyl chlorides in the presence of in metal and DMF", Bull. Korean Chem. Soc., 30, 27 (2009). https://doi.org/10.5012/bkcs.2009.30.1.027
  11. A. F. J. Koehler, K. Song, Y. Lee, and C. Shin, Additives for salt rejection enhancement of a membrane, in: US Patent, US20170056840A1 (2015).