DOI QR코드

DOI QR Code

The Design of Manufacturing Simulation Modeling Based on Digital Twin Concept

Digital Twin 개념을 적용한 제조환경 시뮬레이션 모형 설계

  • Received : 2020.01.14
  • Accepted : 2020.03.18
  • Published : 2020.06.30

Abstract

As the manufacturing environment becomes more complex, traditional simulation models alone are having a lot of difficulties in reflecting real-time manufacturing situations. Although the Digital Twin concept is actively discussed as an alternative to overcome theses issues, many studies are being carried out only in the product design phase. This research presents a Digital Twin-based manufacturing environment framework for applying the Digital Twin concept to the manufacturing process. Twin model that is operated in virtual space, physical system and databases describing the actual manufacturing environment, are proposed as detailed components that make up the framework. To check the applicability of proposed framework, a simple Digital Twin-based manufacturing system was simulated in a conveyor system using Arena software and Excel VBA. Experiment results have shown that the twin model is transmitted real time data from the physical system via DB and were operating in the same time unit. The Excel VBA fitted parameters defined by cycle time based on historical data that real-time and training data are being accumulated together. This study proposes operating method of digital twin model through the simple experiment examples. The results lead to the applicability of Digital twin model.

제조환경이 더욱 복잡해짐에 따라 전통적인 시뮬레이션만으로는 실시간 현장 결과를 평가하는 데 많은 어려움을 겪고 있다. 이를 극복하기 위한 대안으로 Digital Twin개념이 활발히 논의되고 있지만, 제품설계 단계에 국한되어 연구가 진행되고 있는 실정이다. 본 연구는 Digital Twin개념이 생산 공정 프로세스에 적용되기 위한 Digital Twin 기반 제조환경 프레임워크를 제시하였다. 구성요소는 실제 생산환경인 물리적 시스템과 데이터베이스, 그리고 가상 시스템인 트윈 모델을 제안하였다. 본 연구에서는 Arena 소프트웨어와 엑셀 VBA를 활용하여 컨베이어 시스템을 대상으로 간단한 Digital Twin 기반 제조시스템을 모의실험하였다. 실험결과 트윈 모델이 실제 물리적 시스템의 실시간 데이터를 전송받아 동일한 시간단위로 작동됨을 확인하였고, 엑셀 VBA에서 축적된 실시간 데이터와 학습 데이터를 기반으로 조정된 파라미터를 생성하고 있음을 확인하였다. 또한, 간단한 모의실험을 통해 Digital Twin 모델 구동 방법을 제안하였으며, Digital Twin 모델의 구현 가능성을 보여주었다.

Keywords

References

  1. 장예지. 디지털 전환의 핵심 디지털 트윈. 2019-26호. ICT SPOT ISSUE. pp. 4-23, 2019.
  2. Boschert, S., &Rosen, R. (2016). Digital twin-the simulation aspect. In Mechatronic Futures (pp. 59-74). Springer, Cham.
  3. Erikstad, S. O. (2017). Merging Physics, Big Data Analytics and Simulation for the Next-Generation Digital Twins. High-Performance Marine Vehicles, 141-151.
  4. Gu, X., &Koren, Y. (2018). Manufacturing system architecture for cost-effective mass-individualization. Manufacturing letters, 16, 44-48. https://doi.org/10.1016/j.mfglet.2018.04.002
  5. Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFACPapersOnLine, 51(11), 1016-1022.
  6. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431-440. https://doi.org/10.1016/j.bushor.2015.03.008
  7. LENG, Jiewu, et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing, 2019, 10.3: 1155-1166. https://doi.org/10.1007/s12652-018-0881-5
  8. Negri, E., Fumagalli, L., &Macchi, M. (2017). A review of the roles of digital twin in cps-based production systems. Procedia Manufacturing, 11, 939-948. https://doi.org/10.1016/j.promfg.2017.07.198
  9. Posada, J.; Toro, C.; Barandiaran, I.; Oyarzun, D.; Stricker, D.; de Amicis, R. Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet. IEEE Comput. Graph. Appl. 2015, 35, 26-40. https://doi.org/10.1109/MCG.2015.45
  10. ROSEN, Roland, et al. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 2015, 48.3: 567-572. https://doi.org/10.1016/j.ifacol.2015.06.141
  11. Schleich, B., Anwer, N., Mathieu, L., &Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), 141-144. https://doi.org/10.1016/j.cirp.2017.04.040
  12. Shen, W. (2002). Distributed manufacturing scheduling using intelligent agents. IEEE intelligent systems, 17(1), 88-94. https://doi.org/10.1109/5254.988492
  13. T.Sauter and M.Lobashov, "How to access factory floor information using Internet technologies and gateways," IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 671-699, Nov. 2011. https://doi.org/10.1109/TII.2011.2166776
  14. TAN, Yifei, et al. Application of IoT-Aided Simulation to Manufacturing Systems in Cyber-Physical System. Machines, 2019, 7.1: 2. https://doi.org/10.3390/machines7010002
  15. Tao, F., &Qi, Q. (2017). New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1), 81-91. https://doi.org/10.1109/TSMC.2017.2723764
  16. Tao, F., &Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. Ieee Access, 5, 20418-20427. https://doi.org/10.1109/ACCESS.2017.2756069
  17. Tao, F., Zhang, M., Liu, Y., &Nee, A. Y. C. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169-172. https://doi.org/10.1016/j.cirp.2018.04.055
  18. YANG, W., et al. Digital twin-driven simulation for a cyber-physical system in Industry 4.0. DAAAM International Scientific Book, 2017, 227-234.
  19. Yang, W.; Tan, Y.; Yoshida, K.; Takakuwa, S. Digital Twin-Driven Simulation for A Cyber-Physical System in Industry 4.0. In DAAAM International Scientific Book 2017; DAAAM International Publishing: Vienna, Austria, 2017; pp. 227-234. ISBN 978-3-902734-12-9.
  20. Zhuang, C., Liu, J., &Xiong, H. (2018). Digital twinbased smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(1-4),