DOI QR코드

DOI QR Code

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators

알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성

  • Cho, Won-Jung (Dept. of Civil & Environmental System Eng., Hanyang University) ;
  • Park, Eon-Sang (Dept. of Construction System Eng., Soongsil Cyber University) ;
  • Jung, Ho-Seop (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Ann, Ki-Yong (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 조원정 (한양대학교 건설환경시스템공학과) ;
  • 박언상 (숭실사이버대학교 건설시스템공학과) ;
  • 정호섭 (한양대학교 건설환경공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2020.03.04
  • Accepted : 2020.05.21
  • Published : 2020.06.30

Abstract

This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

본 연구에서는 페로니켈의 제련과정에서 발생하는 산업부산물인 페로니켈슬래그 미분말과 광물질혼화재료를 사용한 시멘트 경화체의 역학적 특성 및 내구성능을 평가하였다. 3성분계 시멘트 경화체의 수화열, 공극구조, 압축강도, 길이변화, 급속염화물 침투시험(RCPT), 동결융해 저항성을 평가하여 보통포틀랜드 시멘트와 비교하였다. 그 결과 페로니켈 슬래그 미분말 및 광물질 혼화재료를 사용한 3성분계 시멘트 경화체의 압축강도는 기준콘크리트에 비하여 낮은 강도발현을 하였으나, 알칼리 활성화제를 사용함에 따라 어느 정도 회복되는 것을 알 수 있었다. 페로니켈 슬래그를 사용한 시멘트 모르타르의 길이변화는 기준 시편보다 수축이 덜 발생하는 것으로 나타났다. 또한 페로니켈 슬래그 미분말을 사용한 경우 알칼리활성화제 사용유무에 관계없이 모두 ASTM C 1202에서 제시한 '매우 낮은' 영역의 값을 나타내었으며, 동결융해저항성 평가에서도 기준콘크리트에 비하여 아주 우수한 결과를 나타내었다.

Keywords

References

  1. Bohac, M., Palou, M., Novotny, R., Masilko, J., Vsiansky, D., Stanek, T. (2014). Investigation on early hydration of ternary Portland cement-blast-furnace slag-meta kaolin blends, Construction and Building Materials, 64, 333-341. https://doi.org/10.1016/j.conbuildmat.2014.04.018
  2. Chen, Y., Ji, T., Yang, Z., Zhan, W., Zhang, Y. (2020). Sustainable use of ferronickel slag in cementitious composites and the effect on chloride penetration resistance, Construction and Building Materials, 240, Article number 117969.
  3. Choi, H.K., Lee, J.M., Hong, J.H., Seo, K.H., Park, M.Y. (2017). "Fundamental properties of concrete according to the fineness of ferronickel slag," Proceedings of Korea Concrete Institute, 29(1), 491-492 [in Korean].
  4. Choi, Y.W., Park, M.S., Bae, S.H., Lee, H.H., Cho, B.S. (2010). "Properties of water granulated ferro-nickel slag as fine aggregate for concrete," Proceedings of Korea Society of Civil Engineering, 1462-1465 [in Korean].
  5. Gao, X.F., Zhang, H.Y., Yang, X.Y. Li, K.Z. (2017). The application of ferronickel compound admixture in concrete, China J. Build. Mater. Tech., 26(01), 23-26.
  6. Huang, Y., Wang, Q., Shi, M. (2017). Characteristics and reactivity of ferronickel slag powder, Construction and Building Materials, 156, 773-789. https://doi.org/10.1016/j.conbuildmat.2017.09.038
  7. Katsiotis, N.S., Tsakiridis, P.E., Velissariou, D., Katsiotis, M.S., Alhassan, S.M., Beazi, M. (2015). Utilization of ferronickel slag as additive in portland cement: A hydration leaching study, Waste and Biomass Valorization, 6(2), 177-189. https://doi.org/10.1007/s12649-015-9346-7
  8. Kim, H., Lee, C.H., Ann, K.Y. (2019). Feasibility of ferronickel slag powder for cementitious binder in concrete mix, Construction and Building Materials, 207, 693-705. https://doi.org/10.1016/j.conbuildmat.2019.02.166
  9. Kim, R.H., Kim, G.Y., Kim, J.H., Lee, B.K., Cho, B.S. (2014). Effect of types and replacement ratio of alkali activator on compressive strength of ground franulated blast furnace slag mortar, Journal of the Korean Recycled Construction Resources Institute, 2(4), 360-366 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.4.360
  10. Kim, S.H., Hwang, J.P. (2013). The $CO_2$ emission in the process of cement manufacture depending on CaO content, Journal of the Korea Concrete Institute, 25(4), 365-370 [in Korean]. https://doi.org/10.4334/JKCI.2013.25.4.365
  11. KS F 2790 (2016). Ferronickel Slag Fine Aggregate for Concrete, Korea Standard Association [in Korean].
  12. KS F 2790 (2018). Concrete Aggregate, Korea Standard Association [in Korean].
  13. Liu, L.Y., Liu, Y., Zhang, K., Song, N.J., Zhao, H.Y., Liu, F.T. (2016). Influence of ferronickel slag used as admixture on cement properties, Bull. Chin. Ceram. Soc., 35(06), 1705-1715.
  14. Mehta, P.K., Monteiro, P.J.M. (2006). Concrete Micro- Structure, Properties, and Materials, 3rd Edition. McGraw-Hill, New York.
  15. Mindess, S., Young, J.F., Darwin, D. (1981). Concrete, Prentice-Hall, Englewood Cliffs, NJ 481.
  16. Ngruyen, Q.D., Khan, M.S.H., Castel, A., Kim, T. (2019). Durability and microstructure properties of low-carbon concrete incorporating ferronickel slag sand and fly ash, Journal of Materials in Civil Engineering, 31(8).
  17. Peng, Z., Gu, F., Zhang, Y., Tang, H., Ye, L., Tian, W., Liang, G., Rao, M., Li, G., Jiang, T. (2018). Chromium: a double-edged sword in preparation of refractory materials from ferronickel slag, ACS Sustainable Chem. Eng. 6(8), 10536-10544. https://doi.org/10.1021/acssuschemeng.8b01882
  18. Qi, A., Liu, X., Wang, Z., Chen, Z. (2020). Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder, Construction and Building Materials, 231, Article number 117120.
  19. Rahman, M.A., Sarker, P.K., Shaikh, F.U.A., Saha, A.K. (2017). Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag, Construction and Building Materials, 140, 194-202. https://doi.org/10.1016/j.conbuildmat.2017.02.023
  20. Saha, A.K., Khan, M.N.N., Sarker, P.K. (2018). Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review, Resources, Conservation and Recycling, 134, 10-24. https://doi.org/10.1016/j.resconrec.2018.02.034
  21. Saha, A.K., Sarker, P.K. (2017). Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete:Mechanical properties and leaching study, Journal of Cleaner Production, 162, 438-448. https://doi.org/10.1016/j.jclepro.2017.06.035
  22. Saha, A.K., Sarker, P.K. (2018). Durability characteristics of concrete using ferronickel slag fine aggregate and fly ash, Magazine of Concrete Research, 70(17), 865-874. https://doi.org/10.1680/jmacr.17.00260
  23. Saha, A.K., Sarker, P.K. (2019). Mitigation of the potential alkali-silica reaction of ferronickel slag(FNS) aggregate by using ground FNS as a supplementary cementitious material, Advances in Cement Research, 1-27.