DOI QR코드

DOI QR Code

Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method

졸-겔법으로 제조된 Bismuth ferrite의 가시광 광촉매 특성

  • Park, Byung-Geon (Department of Food and Nutrition, Kwangju Women's University) ;
  • Chung, Kyong-Hwan (Department of Environmental Engineering, Sunchon National University)
  • 박병건 (광주여자대학교 식품영양학과) ;
  • 정경환 (순천대학교 환경공학과)
  • Received : 2020.03.03
  • Accepted : 2020.04.30
  • Published : 2020.08.01

Abstract

The method for preparing a perovskite-type bismuth ferrite (BFO) photocatalyst which reacts to visible LED light and the characteristics of visible light photocatalysis were investigated. BFO was prepared according to the sol-gel method. The prepared BFO consisted mainly of BiFeO3 structure and formed a nano-sized crystal including Bi24Fe2O39 structure. The BFO nano crystallines were identified from the UV-visible diffuse reflectance spectra to absorb UV and visible light up to about 600 nm. The bandgap of the BFO determined from the diffuse reflectance spectrum was about 2.2 eV. Formaldehyde was decomposed by the photoreaction of BFO photocatalysts with the visible light LED lamps with wavelengths of 585 nm and 613 nm. The narrow bandgap of BFO led to elicit BFO photocatalytic activity in visible LED light.

가시광 LED 빛에 반응하는 페로브스이트형 bismuth ferrite (BFO) 광촉매 제조방법과 가시광 광촉매 반응 특성을 조사하였다. BFO는 졸-겔법에 따라 제조하였다. 제조된 BFO는 주로 BiFeO3 구조로 이루어져 있으며 Bi24Fe2O39 구조도 포함한 나노 크기의 결정을 이루고 있었다. BFO 나노 결정은 약 600 nm까지 자외선과 가시광선을 흡수하는 것을 UV-visible 확산 반사 스펙트럼으로부터 확인하였다. 확산 반사 스펙트럼으로부터 구한 BFO의 밴드갭은 약 2.2 eV로 나타났다. 포름알데히드는 585 nm와 613 nm 파장의 가시광 LED 램프의 빛과 BFO 광촉매와의 광반응에 의하여 분해되어 제거되었다. BFO의 가시광 LED 빛에서 광촉매 활성은 BFO의 좁은 밴드갭에서 기인하는 것으로 보인다.

Keywords

References

  1. Fujishima, A., Honda, K., "Electrochemical Photolysis of Water at a Semicounductor Electorode," Nature, 238, 37-38(1972). https://doi.org/10.1038/238037a0
  2. Yang, X. Y., Wolcott, A., Wang, G. M., Sobo, A., Fitzmorris, R. C., Qian, F., Zhang, J. Z. and Li, Y., "Nitrogen-doped ZnO Nanowire Arrays for Photoelectro Chemical Water Splitting," Nano Lett., 9, 2331-2336(2009). https://doi.org/10.1021/nl900772q
  3. Wolcott, A., Smith, W. A., Kuykendall, T. R., Zhao, Y. P. and Zhang, J. Z., "Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation From water Splitting," Adv. Funct. Mater., 19, 1849-1856(2009). https://doi.org/10.1002/adfm.200801363
  4. Zhang, Z., Hossain, M. F. and Takahashi, T., "Self-assembled Hematite (a-$Fe_2O_3$) Nanotube Arrays for Photoelectrocatalytic Degradation of Azo Dye Under Simulated Solar Light Irradiation," Appl. Catal. B: Environ., 95, 423-429(2010). https://doi.org/10.1016/j.apcatb.2010.01.022
  5. Weinhardt, L., Blum, M., Bar, M., Heske, C., Cole, B., Marsen, B. and Miller, E. L., "Electronic Surface Level Positions of $WO_3$ Thin Films for Photoelectrochemical Hydrogen Production," J. Phys. Chem. C, 112, 3078-3082(2008). https://doi.org/10.1021/jp7100286
  6. Wu, H. and Zhang, Z., "High Photoelectrochemical Water Splitting Performance on Nitrogen Doped Double-wall $TiO_2$ Nanotube Array Electrodes," Int. J. Hydrogen Energy, 36, 13481-13487(2011). https://doi.org/10.1016/j.ijhydene.2011.08.014
  7. Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y. and Hao, P., "Carbon Quantum Dots/hydrogenated $TiO_2$ Nanobelt Hetero Structures and Their Broad Spectrum Photocatalytic Properties Under UV, Visible, and Near-infrared Irradiation," Nano Energy, 11, 419-427(2015). https://doi.org/10.1016/j.nanoen.2014.10.025
  8. Sharotri, N. and Sud, D., "A Greener Approach to Synthesize Visible Light Responsive Nanoporous S-doped $TiO_2$ with Enhanced Photocatalytic Activity," New J. Chem., 39, 2217-2223(2015). https://doi.org/10.1039/C4NJ01422G
  9. Sharotri, N. and Sud, D., "Ultrasound-assisted Synthesis and Characterization of Visible Light Responsive Nitrogen-doped $TiO_2$ Nanomaterials for Removal of 2-chlorophenol," Desalin. Water Treat., 57, 8776-8788(2016). https://doi.org/10.1080/19443994.2015.1026278
  10. Zhang, L., Jing, D., She, X., Liu, H., Yang, D., Lu, Y., Li, J., Zheng, Z. and Guo, L., "Heterojunctions in g-$C_3N_4/TiO_2(B)$ Nanofibers with Exposed (001) Plane and Enhanced Visible-light Photoactivity," J. Mater. Chem. A, 2, 2071-2078(2014). https://doi.org/10.1039/C3TA14047D
  11. Zhang, M., Shao, C., Mu, J., Zhang, Z., Guo, Z., Zhang, P. and Liu, Y., "One-dimensional $Bi_2MoO_6/TiO_2$ Hierarchical Hetero Structures with Enhanced Photocatalytic Activity," Cryst. Eng. Comm., 14, 605-612(2012). https://doi.org/10.1039/C1CE05974B
  12. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., "Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides," Science, 293, 269-271(2001). https://doi.org/10.1126/science.1061051
  13. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ikeue, K. and Anpo, M., "Degradation of Propanol Diluted in Water Under Visible Light Irradiation Using Metal Ion-implanted Titanium Dioxide Photocatalysts," J. Photochem. Photobiol. A: Chem., 148, 257-261(2002). https://doi.org/10.1016/S1010-6030(02)00051-5
  14. Dvoranovaa, D., Brezovaa, V., Mazuur, M. and Malati, M. A., "Investigations of Metal-doped Titanium Dioxide Photocatalysts," Appl. Catal. B, 37, 91-105(2002). https://doi.org/10.1016/S0926-3373(01)00335-6
  15. Kemp, T. J. and McIntyre, R. A., "Transition Metal-doped Titanium (IV) Dioxide: Characterization and Influence on Photodegradation of Poly(vinyl chloride)," Polym. Degrad. Stab., 91, 165-194(2006). https://doi.org/10.1016/j.polymdegradstab.2005.04.033
  16. Kapoor, P. N., Uma, S., Rodriguez, S. and Klabunde, K. J., "Aerogel Processing of $MTi_2O_5$ (M=Mg, Mn, Fe, Co, Zn, Sn) Compositions Using Single Source Precursors: Synthesis, Characterization and Photocatalytic Behavior," J. Mol. Catal. A-Chem., 229, 145-150(2005). https://doi.org/10.1016/j.molcata.2004.11.008
  17. Rauf, M. A., Meetani, M. A. and Hisaindee, S., "An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of $TiO_2$ Doped with Selective Transition Metals," Desalination, 276, 13-27(2011). https://doi.org/10.1016/j.desal.2011.03.071
  18. Jedsukontorn, T., Ueno, T., Saito, N. and Hunsom, M., "Narrowing Bandgap Energy of Defective Black $TiO_2$ Fabricated by Solution Plasma Process and Its Photocatalytic Activity on Glycerol Transformation," J. Alloys Compd., 757, 188-199(2018). https://doi.org/10.1016/j.jallcom.2018.05.046
  19. Tokura, Y., Seki, S. and Nagaosa, N., "Multiferroics of Spin Origin," Rep. Prog. Phys., 77, 76501(2014). https://doi.org/10.1088/0034-4885/77/7/076501
  20. Martin, L. W., Crane, S. P., Chu, Y.-H., Holcomb, M. B., Gajek, M., Huijben, M., Yang, C.-H., Balke, N. and Ramesh, R., "Multiferroics and Magnetoelectrics: Thin Films and Nanostructures," J. Physics: Condensed Matter., 20, 434220-434233(2008). https://doi.org/10.1088/0953-8984/20/43/434220
  21. Eerenstein, W., Mathur, N. D., Scott, J. F., "Multiferroic and Magnetoelectric Materials," Nature, 442, 759-765(2006). https://doi.org/10.1038/nature05023
  22. Yi, H. T., Choi, T., Choi, S. G., Oh, Y. S. and Cheong, S.-W., "Mechanism of the Switchable Potovoltaic Effect in Frroelectric $BiFeO_3$," Adv. Mater., 23, 3403-3407(2011). https://doi.org/10.1002/adma.201100805
  23. Ji, W., Yao, K. and Liang, Y. C., "Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric $BiFeO_3$ Thin Films," Adv. Mater., 22, 1763-1766(2010). https://doi.org/10.1002/adma.200902985
  24. Catalan, G. and Scott, J. F., "Physics and Applications of Bismuth Ferrite," Adv. Mater., 21, 2463-2485(2009). https://doi.org/10.1002/adma.200802849
  25. Yang, S. Y., Martin, L. W., Byrnes, S. J., Conry, T. E., Basu, S. R., Paran, D., Reichertz, L., Ihlefeld, J., Adamo, C., Melville, A., Chu, Y. H., Yang, C. H., Musfeldt, J. L., Schlom, D. G., Ager, J. W. and Ramesh, R., "Photovoltaic Effects in $BiFeO_3$," Appl. Phys. Lett., 95, 062909(2009). https://doi.org/10.1063/1.3204695
  26. Li, S., Lin, Y.-H., Zhang, B.-P., Wang, Y. and Nan, C.-W., "Controlled Fabrication of $BiFeO_3$ Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors," J. Phys. Chem. C, 114, 2903-2908(2010). https://doi.org/10.1021/jp910401u
  27. Brody, P. S., "Large Polarization-dependent Photovoltages in Ceramic $BaTiO_3$ + 5 wt.% $CaTiO_3$," Solid State Commun., 12, 673-676(1973). https://doi.org/10.1016/0038-1098(73)90310-4
  28. Ichiki, M., Morikawa, Y. and Nakada, T., "Electrical Properties of Ferroelectric Lead Lanthanum Zirconate Titanate as an Energy Transducer for Application to Electrostatic-optical Motor," Jpn. J. Appl. Phys., 41, 6993-6996(2002). https://doi.org/10.1143/JJAP.41.6993
  29. Gao, F., Chen, X. Y., Yin, K. B., Dong, S., Ren, Z. F., Yuan, F., Yu, T., Zou, Z. G. and Liu, J. M., "Visible-light Photocatalytic Properties of Weak Magnetic $BiFeO_3$ Nanoparticles," Adv. Mater., 19, 2889-2892(2007). https://doi.org/10.1002/adma.200602377
  30. Zhang, X., Lv, J., Bourgeois, L., Cui, J., Wu, Y., Wang, and H., Webley, P. A., "Formation and Photocatalytic Properties of Bismuth Ferrite Submicrocrystals with Tunable Morphologies," New J. Chem., 35, 937-941(2011). https://doi.org/10.1039/c1nj00008j
  31. Wang, X., Lin, Y., Zhang, Z. C. and Bian, J. Y., "Photocatalytic Activities of Multiferroic Bismuth Ferrite Nanoparticles Prepared by Glycol-based Sol-gel Process," J. Sol-Gel Sci. Technol., 60, 1-5(2011). https://doi.org/10.1007/s10971-011-2542-4
  32. Guo, R., Fang, L., Dong, W., Zheng, F. and Shen, M., "Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped $BiFeO_3$ Nanoparticles," J. Phys. Chem. C, 114, 21390-21396(2010). https://doi.org/10.1021/jp104660a
  33. Soltani, T. and Lee, B.-K., "Novel and Facile Synthesis of Badoped $BiFeO_3$ Nanoparticles and Enhancement of Their Magnetic and Photocatalytic Activities for Complete Degradation of Benzene in Aqueous Solution," J. Hazard. Mater., 316, 122-133(2016). https://doi.org/10.1016/j.jhazmat.2016.03.052
  34. Brunauer, S., Emmett, P. H. and Teller, E., "Adsorption of Gases In Multimolecular Layers," J. Am. Chem. Soc., 60, 309-319(1938). https://doi.org/10.1021/ja01269a023
  35. Kubelka, P. and Munk, F., "Ein Beitrag Zur Optik Der Farbanstriche," Zeit. Fur. Tech. Phys., 12, 593-596(1931).
  36. Vijayasundaram, S. V. and Kanagadurai, R., "Size Dependent Magnetic Properties of $BiFeO_3$ Nanoparticles: A Multifunctional Material for Saving Energy," Int. J. Chem.Tech. Res., 8, 436-440(2015).
  37. Rao, G. V. S., Rao, C. N. R. and Ferraro, J. R., "Infrared and Electronic Spectra of Rare Earth Perovskites: Ortho-chromites. Manganites and Ferrites," Appl. Spectrosc., 24, 436-445(1970). https://doi.org/10.1366/000370270774371426
  38. Yamaguchi, O., Narai, A., Komatsu, T. and Shimizu, K., "Crystallization and Transformation of Distorted Cubic $PbTiO_3$," J. Am. Ceram. Soc., 69, 256-257(1986). https://doi.org/10.1111/j.1151-2916.1986.tb07420.x
  39. Yang, H., Xian, T., Wei, Z. Q., Dai, J. F., Jiang, J. L. and Feng, W. J., "Size-controlled Synthesis of $BiFeO_3$ Nanoparticles by a Soft-chemistry Route," J. Sol-Gel Sci. Technol., 58, 238-243(2011). https://doi.org/10.1007/s10971-010-2383-6
  40. Hua, K., Wang, W., Wang, Y., Xu, J., Jia, D., Lu, Z. and Zhou, Y., "Factors Controlling Pure-phase Multiferroic $BiFeO_3$ Powders Synthesized by Chemical co-precipitation," J. Alloys Compd., 509, 2192-2197(2011). https://doi.org/10.1016/j.jallcom.2010.09.213
  41. Wang, X., Lin, Y., Ding, X. F. and Jiang, J. G., "Enhanced Visible-light-response Photocatalytic Activity of Bismuth Ferrite Nanoparticles," J. Alloy Compd., 509, 6585-6588(2011). https://doi.org/10.1016/j.jallcom.2011.03.074
  42. Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. and McIntyre, N. S., "Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds," Surf. Interf. Anal., 36, 1564-1574(2004). https://doi.org/10.1002/sia.1984
  43. http://www.lasurface.com/database/elementxps.php.