DOI QR코드

DOI QR Code

Study on the Effect of Fineness and Substitution Rate of Natural Zeolites on Chemical Reaction and Physical Properties of Cement Mortar

천연 제올라이트의 분말도와 치환율이 시멘트모르타르의 화학반응 및 물리적 특성에 미치는 영향에 관한 연구

  • 윤창복 (한양대학교 대학원 건축시스템공학과) ;
  • 이한승 (한양대학교 ERICA건축학부)
  • Received : 2020.04.20
  • Accepted : 2020.05.28
  • Published : 2020.06.30

Abstract

As a basic study for the application of natural zeolite as a concrete admixture, the compressive strength, activity factor, Ca(OH)2 quantitative analysis and XRD experiments were investigated. It is thought that SiO2, which is abundant in natural zeolite, affects the strength development by reacting with the hydration product of cement in all specimens in which natural zeolite was added according to powder level and substitution rate. As the substitution rate increases, the compressive strength decreases, which is considered to be due to the decrease in the amount of C3S and C2S minerals in the clinker, which affects the strength expression compared to the cement content of the reference mortar. The XRD crystal structure did not show a significant difference from the reference mortar, and it was confirmed that the Z2-10 (Blaine: 15,600㎠ / g) specimen with 10% substitution of natural zeolite was the best among the experimental levels. Substitution amount for use as concrete admixture is 10% substitution is most ideally seen.

천연제올라이트를 콘크리트 혼화재료로서 활용을 위한 기초적 연구로서, 압축강도, 활성도 지수, Ca(OH)2정량분석, XRD 실험을 통하여 고찰하였다. 천연제올라이트를 분말도 및 치환율에 따라 첨가한 모든 실험체에서 천연제올라이트에 풍부하게 함유되어 있는 SiO2가 시멘트의 수화생성물과의 반응으로 강도발현에 영향을 미치는 것으로 사료된다. 치환율이 많아 질수록 압축강도가 저하되는 것을 확인할 수 있었으며, 이는 기준모르타르의 시멘트 양에 비해 강도발현에 영향을 미치는 C3S, C2S의 클링커 구성 광물의 함유량이 감소하였기 때문으로 판단된다. XRD 결정 구조상 기준모르타르와 큰 차이를 보이지 않았으며, 이를 통해 천연제올라이트를 10% 치환한 Z2-10(Blaine : 15,600㎠/g)실험체가 실험수준 중 가장 우수한 것으로 확인 할 수 있었다. 콘크리트 혼화재료로 사용하기 위한 치환량은 10%의 치환이 가장 이상적으로 보여진다.

Keywords

References

  1. Islam, A., Alengaram, U. J., Jumaat, M. Z., and Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design ,56 , 833-841. https://doi.org/10.1016/j.matdes.2013.11.080
  2. Deb, P. S., Nath, P. R. A. D. I. P., & Sarker, P. K. (2013). Strength and Permeation Properties of Slag Blended Fly Ash Based Geopolymer Concrete. Advanced Materials Research, 651, 168-173. https://doi.org/10.4028/www.scientific.net/AMR.651.168
  3. Choi, J. J., Lee, K. H., and Lee, C. Y. (1996), A Study on the Characterization of Cement Paste and Mortar Containing either Natural Zeolite or Fly Ash, JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, 16(1-3), 227-236.
  4. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. (2014), Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
  5. Choi, H. Y. (2002), Study on the construction resources usability of activated hwangtoh, Unpublished doctoral dissertation, Chung Nam National University, Chung Nam, Korea.
  6. Lee , C, Y., Han J, Y., and Choi , J, J. (1997), A Study on Physical Properties of Concrete Containing Natural Zeolite, JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, 17(1-6), 855-865.
  7. Naiqian, F., Changchen, M., and Xihuang, J. (1992). Natural zeolite for preventing expansion due to alkali-aggregate reaction. Cement, Concrete and Aggregates, 14(2).
  8. Wang, H., Gillott, J. E. (1993). Effect of three zeolite-containing natural pozzolanic materials on alkali-silica reaction. Cement, Concrete and Aggregates, 15(1), 24-30.
  9. Choi, J. J. (1998), A Study on the Properties of Concrete Using Zeolite, Journal of the Korea Concrete Institute, 10(5), 1998.10, 205-216.
  10. Seo, G. (2005), Zeolite First step, Chon Nam National University Press.
  11. Minato, H. (1978), Zeolite: Natural resources and utilization. Zeolite: Natural resources and utilization Transl. into ENGLISH from Seramikkusu, 10(12), 941-957.
  12. Breck, D. W. (1974), Zeolite molecular sieves, John Wilcy & Sons, Inc., New York, 740-741.
  13. Kim, H. J. (1998), Humidity Controlling Concrete using Natural Zeolite, Magazine of the Korea Concrete Institute, 10(6), 27-33. https://doi.org/10.22636/MKCI.1998.10.6.27
  14. Jo, B. H., Choi, J. S., Park, J. H., Kang, S. W and Lim, J. H.(2008), An Experimental study on the Mechanical Characteristics of Zeolite Concrete, KOREAN SOCIETY OF CIVIL ENGINEERS, 2701-2704.
  15. Kang, S. K., Kim, Y. J(1995), A XRD Analysis on the Reaction of Limestone - Sulfur Dioxide, Journal of Korean Society of Environmental Engineers, 17(8), 799-810.
  16. Hong, S. K. (2001), X-ray Crystallography and Its Application to Polymers, Polymer Science and Technology, 12(3), 418-426.
  17. WI, K. W., LEE, H. S. (2016), An experimental study on hydration properties of POFA as a cementitious mineral admixture. Journal of the Architectural Institute of Korea Structure & Construction, 32(7), 41-48. https://doi.org/10.5659/JAIK_SC.2016.32.7.41
  18. Song, T. S., Park, J. S., Lee, S. H., and Yoon, S. H(2016), Hydrate Characteristics of Cement Paste with Massive Ground Granulate Blast Furnace Slag Powder, Journal of Korean Society of Waste Management, 33(2), 111-118. https://doi.org/10.9786/kswm.2016.33.2.111
  19. Han, J. Y(1995), A Study on Physical Properties of Concrete Containing Natural Zeolite as Admixture, Unpublished master's thesis, Hanyang University, Seoul, Korea, 22-23.
  20. TAYLOR. (1997), Harry FW. Cement chemistry. Thomas Telford.

Cited by

  1. 전기방사로 제작된 재이용 가능한 PAN/제올라이트 섬유의 암모니아 흡착 특성 vol.39, pp.4, 2020, https://doi.org/10.5338/kjea.2020.39.4.33