DOI QR코드

DOI QR Code

Development of Fog Cooling Control System and Cooling Effect in Greenhouse

온실 포그 냉방 제어시스템 개발 및 냉방효과

  • Park, Seok Ho (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Moon, Jong Pil (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kim, Jin Koo (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kim, Seoung Hee (Department of Energy and Environment, NIAS, RDA)
  • 박석호 (국립원예특작과학원 시설원예연구소) ;
  • 문종필 (국립원예특작과학원 시설원예연구소) ;
  • 김진구 (국립원예특작과학원 시설원예연구소) ;
  • 김승희 (국립농업과학원 농업공학부)
  • Received : 2020.03.25
  • Accepted : 2020.06.20
  • Published : 2020.07.30

Abstract

This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.

본 연구는 여름철 고온기에 작물을 정상적으로 재배할 수 있는 환경을 조성하여 농산 가격이 가장 높은 여름철에 수확량을 높이고 재배기간을 연장시켜 농가소득을 올릴 수 있는 방안을 제시하고자 수행하였다. 바닥면적 504㎡의 연동온실의 최대 냉방부하는 462,609W로 나타났으며, 고온기에 온실을 차광하지 않고도 32℃ 이하로 유지하기 위해서는 시간당 472L의 물을 포그 분무해야 하는 것으로 나타났다. 포그 냉방 시스템은 포그 장치, 유동팬, 차광장치로 구성하고, 이들 장치를 효과적으로 제어할 수 있는 포그 냉방 자동제어장치를 개발하였다. 포그 냉방시스템의 냉방 성능은 온실 외기온 보다 내부온도를 6℃ 낮출 수 있는 것으로 나타났다. 포그 온실의 내부 상대습도는 주간에는 40~80%로 대조 온실의 20~60% 보다 약 20% 높게 나타나 오이의 생육에 기여하는 것으로 나타났다. 오이의 생육상태는 포그 온실에서 재배한 오이가 대조 온실에 비해 초장, 엽장, 엽폭, 엽수, 엽록소 값이 전체적으로 높게 나타났다. 포그 온실의 오이 수확량은 대조 온실에 비해 단동 온실에서는 1.8배, 연동 온실에서는 2배 높게 나타났다.

Keywords

References

  1. National Institute of Agricultural Sciences. 2010. New Agricultural Energy Saving Technology. p. 126 (in Korean).
  2. National Institute of Horticultural and Herbal Science. 2003. Protected horticulture, Overcome high temperature in the summer. p. 30-44 (in Korean).
  3. Guerrero, F.V., M. Kacira, E.F. Rodrguez, R. Linker, C. Kubota, G.A. Giacomelli, and A. Arbel. 2012. Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. BIOSYSTEMS ENGIN EERING III:217-228.
  4. Hermosilla, J.S., P.V. Francisco, J. Rincon, and A.J. Callejon. 2013. Evaluation of a fog cooling system for applying plant-protection products in a greenhouse tomato crop. Crop Protection 48:76-81. https://doi.org/10.1016/j.cropro.2013.02.018
  5. Kim, K.S., M.K. Kim, and I.H. Yu. 1999. Actual state of practical use and cooling effect of evaporative cooling system. Journal of Bio-Environment Control. 8:281-287 (in Korean).
  6. Kim, M.K., K.S. Kim, and H.J. Kwon. 2001. The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. Journal of Bio-Envrionment Control. 10:10-14 (in Korean).
  7. Korea Agricultural Machinery Industry Cooperative. 2019. Government loan support agricultural machinery. p. 228-232 (in Korean).
  8. Korea Agro-Fisheries & Food Trade Corporation. 2019. KAMIS Agricultural Products Distribution Information. https://www.kamis.or.kr/customer/main/main.do
  9. Lee, H.W. and Y.S. Kim. 2011. Application of low pressure fogging system for commercial tomato greenhouse cooling. Journal of Bio-Environment Control. 20:1-7 (in Korean).
  10. Mahmoud, M.S. 2015. Experimental study to evaluate mist system performance. International Journal of Innovative Research in Advanced Engineering (IJIRAE) 9:41-48.
  11. Nam, S.W., D.U. Seo and H.H. Shin. 2015. Empirical analysis on the cooling load and evaporation efficiency of fooging system in greenhouse. Protected Horticulture and Plant Factory. 24:147-152 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.147
  12. Nam, S.W., K.S. Kim, and G.A. Giacomelli. 2005. Improvement of cooling efficiency in greenhouse fog system using the dehumidifier. Journal of Bio-Environment Control. 14:29-37 (in Korean).
  13. Nam, S.W., Y.S. Kim and I.M. Sung. 2013. Development of control algorithm for greenhouse cooling using two-fluid fogging system. Protected Horticulture and Plant Factory 22:138-145 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.2.138
  14. Ozturk, H.H. 2006. Evaporative cooling efficiency of foggig system in a rose greenhouse. Australian Journal of Experimental Agriculture. 46:1231-1237. https://doi.org/10.1071/EA04213
  15. Perdigones, A., J.L. Garcia, A. Romero, A. Rodriguez, L. Luna, C. Raposo, and S. de la Plaza. 2008. Cooling strategies for greenhouses in summer: Control of fogging by pulse width modulation. biosystems engineering. 99:573-586. https://doi.org/10.1016/j.biosystemseng.2008.01.001
  16. Rhee, H.C., G.L. Choi, K.H. Yeo, M.W. Cho, and I.W. Cho. 2015. Effect of fog-cooling on the growth and yield of hydroponic paprika in grown summer season. Protected Horticulture and Plant Factory. 24:258-263 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.3.258
  17. Rural Development Administration. 2018. Smart Greenhouse Environment Management Guidelines (2018) p. 26-38 (in Korean).
  18. Sethi, V.P. and S.K. Sharma. 2007. Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy 81:1447-1459. https://doi.org/10.1016/j.solener.2007.03.004
  19. Suh, W.M., Y.H. Bae, H.J. Heo, C.S. Kwak, S.G. Lee, J.W. Lee, and Y.C. Yoon. 2009. Analyses of heating and cooling load in greenhouse of protected horticulture complex in Taean. Journal of the Korean Society of Agricultural Engineers. 51:45-52 (in Korean)
  20. Yu, I.H., M.K. Kim, and H.J. Kwon. 2001. Development of CFD model for Estimation of cooling effects of fog cooling system in greenhouse. The Korean Society for Bio-Environment Control. 10:78-81 (in Korean).
  21. Yu, I.H., M.K. Kim, H.J. Kwon and K.S. Kim. 2002. Development of CFD model for estimation of cooling effect of fog cooling system in greenhouse. Journal of Bio-Environment Control. 11:93-100 (in Korean).