DOI QR코드

DOI QR Code

Determination of Mineral Nutrient Concentrations in Fish Growing Water and Lettuce Leaf for Hydroball Aquaphonics

하이드로볼 배지경 아쿠아포닉스에서 사육수 및 상추 잎의 무기이온 농도 구명

  • Lee, Hyunjin (Department of Agricultural Life Science, Graduate School, Korea National Open University) ;
  • Choi, Kiyoung (Division of Future Agriculture Convergence, College of Agriculture and Life Science, Kangwon National University) ;
  • Choi, Eunyoung (Department of Agricultural Science, Korea National Open University)
  • 이현진 (한국방송통신대학교 대학원 농업생명과학과 대학원) ;
  • 최기영 (강원대학교 농업생명과학대학 미래농업융합학부) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2020.05.28
  • Accepted : 2020.07.05
  • Published : 2020.07.30

Abstract

This experiment was aimed to identify concentrations of mineral nutrients in leaf lettuce (Lactuca sativa) grown on hydroball aquaponics and in the water for growing fish by conducting two experiments. The experiment I (Expt. I) was conducted with 12 fishes (F12) with and without filter, hydroball and plants (H12 (12 fishes, hydroball), FHP12 (12 fishes, filter, hydroball, 6 plants) and HP12 (12 fishes, hydroball, 6 plants)), and the experiment II (Expt. II) was with and without plants (FH15 (15 fishes, filter, hydroball), FHP15 (15 fishes, filter, hydroball, 6 plants)). The pH level in the water of all the treatments was decreased during the growing period, and the pH and EC of the water were lower in all the treatment with plants than those without plants in both Expt. I and Expt. II. When compared with adequate nutrient concentrations for hydroponics, nitrate nitrogen (NO3-N) and phosphorus (P) concentrations in the fish growing water were higher under the FHP15 treatment in Expt. II; however, potassium (K), calcium (Ca), and magnesium (Mg) were only 16, 49, and 82% of hydroponics, representatively, and iron (Fe) was not detected. The fresh weight of lettuce harvested from the FHP15 treatment was 38 g, only a 30% of marketable lettuce yield. The T-N and P contents of the leaf tissue grown under the FHP15 treatment were close to the optimal level; however, the K, Ca, and iron (Fe) contents were less than the optimal with no deficiency symptom.

하이드로볼 배지경 아쿠아포닉스에서 상추의 엽과 수조내 무기이온 함량 변화를 구명하기 위하여 실험 1은 간이 NFT 시스템에 여과기를 장착한 후 물고기 12마리 사육한 처리구(F12)와 여과기 없이 하이드로볼 배지를 장착하고 물고기 12마리를 재배한 처리구(H12), 여과기를 장착하고 하이드로볼에 상추 모종 6주를 심고 물고기 12마리를 재배한 처리구(FHP12)와 여과기 없이 하이드로볼에 상추 6주를 심고 물고기 12마리를 재배한 처리구(HP12)로 설정하였고, 실험 2는 간이 NFT에 여과기를 장착하고 하이드로볼을 장착한 후 식물 없이 물고기 15마리 사육한 처리구(FH15)와 여과기를 장착하고 하이드로볼에 상추 6주를 심고 물고기 15마리를 사육한 처리구(FHP15)로 설정하였다. 실험 1, 2의 모든 처리구에서 재배 동안사육수 pH가 낮아졌고 pH와 EC는 식물 재배구에서 더 낮았다. 실험 2의 FHP15 처리구의 사육수 내 무기이온 농도를 수경재배의 양액농도와 비교하였을 때 NO3-N과 P은 더 높았고 K는 16%, Ca은 49%, Mg은 82% 수준이었고 Fe는 불검출 수준이었다. FHP15 처리구에서 생산된 상추 생체중은 상품성 중량의 1/3(38g)수준이었다. 엽내 T-N과 P 함량은 적정수준에 근접하였고 K와 Fe 함량은 적정 미만이었으나 결핍증상은 없었다.

Keywords

References

  1. Bittsanszky, A., N. Uzinger, G. Gyulai, A. Mathis, R. Junge, M. Villarroel, B. Kotzen, and T. Komives. 2016. Nutrient supply of plants in aquaponic systems. Ecocycles. 2:17-20.
  2. Buhmann, A.K., U. Waller, B. Wecker, and J. Papenbrock. 2015. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 149:102-144. https://doi.org/10.1016/j.agwat.2014.11.001
  3. Cerozi, B.S. and K. Fitzsimmons. 2017. Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric Syst. 153:94-100. https://doi.org/10.1016/j.agsy.2017.01.020
  4. Choi, E.Y., H.J. Lee, D.S. Han, J.H. Baek, and B.H. Yoon. 2019. Impacts of hydroball on nitrification in aquaponic system. KNOU Journal. 68:223-238.
  5. Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant physiol. 36:77-115. https://doi.org/10.1146/annurev.pp.36.060185.000453
  6. Epstein, E. and A.J. Bloom. 2005. Mineral nutrition of plants: principles and perspectives 2nd edition. Sinauer Associates, Inc. p. 34-35.
  7. Francis, C., G. Lieblein, S. Gliessman, T.A. Breland, N. Creamer, R. Harwood, L. Salomonsson, J. Helenius, D. Rickerl, R. Salvador, M. Wiedenhoeft, S. Simmonsk, P. Allen, M. Altieri, C. Flora, and R. Poincelot. 2003. Agroecology: the ecology of food systems. J. Sustain. Agric. 22:99-118.
  8. Goddek, S., B. Delaide, U. Mankasingh, K. Ragnarsdottir, H. Jijakli, and R. Thorarinsdottir. 2015. Challenges of Sustainable and Commercial Aquaponics. Sustainability, MDPI, Open Access J. Sustain. 7:4199-4224. https://doi.org/10.3390/su7044199
  9. Goddek, S., Z. Schmautz, B. Scott, B. Delaide, K.J. Keesman, S. Wuertz, and R. Junge. 2016. The effect of anaerobic and aerobic fish sludge supernatant on hydroponic. J. Agron. 6:37. https://doi.org/10.3923/ja.2007.37.44
  10. Graber, A. and R. Junge. 2009, Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination. 246:147-156. https://doi.org/10.1016/j.desal.2008.03.048
  11. Harris, J. M. 2001. Agriculture in a global perspective. Global development and environmental institute working. p. 1-4.
  12. Ho, C.C. and P.H. Wang, 2015. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials. Intl J. environ. res. and public health. 12:3362-3380. https://doi.org/10.3390/ijerph120303362
  13. Hochheimer, J.N. and F. Wheaton. 1998. Biological filters: Trickling and RBC design Proc. 2nd. Intl Conf. Recirc. Aqua. p. 291-318.
  14. Johansson-Westholm, L. 2006. Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? Water Res. 40:23-36. https://doi.org/10.1016/j.watres.2005.11.006
  15. Jones, J.B., B. Wolf, and H.A. Mills. 1991. Plant analysis handbook. Micro-Macro Publishing, Athens, Ga. p. 213.
  16. Joyce, A., M. Timmons, S. Goddek, and T. Pentz. 2019. Bacterial Relationships in Aquaponics: New Research Directions. Aquaponics Food Production Systems. p. 145-161.
  17. Kim I.k., S.H. Seo, and C.Y. Kang. 2000. General properties and ferric oxide content of Hwangtoh(yellow ochre). J. Kor. Pharm. Sci. 30:2019-222.
  18. Lee, Y.b., K.W. Bak S.T. Park, J.H. Bae H.J. You, H.Y. Jo, K.Y Choi, and Y.Y. Choi. 2015. Practical Hydroponics. Jinsol p. 86.
  19. Lehman, H., E.A. Clark, and S.F. Weise, 1993. Clarifying the definition of sustainable agriculture. J. Agric, Environ Ethics. 6:127-143. https://doi.org/10.1007/BF01965480
  20. Luis, P.U., L.E. Jose, F.C. Rafael, and M.F.C. Victor. 2019. Suitability and optimization of FAO's small-scale aquaponics systems for joint production of lettuce (Lactucasativa) and fish (Carassiusauratus). Aquac. Eng. 85:129-137. https://doi.org/10.1016/j.aquaeng.2019.04.001
  21. Lennard, W.A. and R.V. Leonard. 2006. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique)in an Aquaponic test system. Aquacult Int. 14:539-550. https://doi.org/10.1007/s10499-006-9053-2
  22. Marschner, H. and P. marschner. 1995. Mineral Nutrition of Higher Plants, 2nd edition. Academic Press. p. 201-228.
  23. Munguia-Fragozo, P., O. Alatorre-Jacome, E. Rico-Garcia, I. Torres-Pacheco, A. Hernandez, R.V. Ocampo-Velazquez, J.F. GarciaTrejo, and R.G. Guevara-Gonzalez. 2015. Perspective for aquaponic systems: "omic" technologies for microbial community analysis. Biomed. Res. Int. 2015:480386.
  24. Nozzi, V., A. Graber, Z. Schmautz, A. Mathis, and R. Junge. 2018. Nutrient management in aquaponics: comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agron. 8:27. https://doi.org/10.3390/agronomy8030027
  25. Pantanella, E., Cardarelli, M., Colla, G., Rea, E., and A. Marcucci. 2010. Aquaponics vs. Hydroponics: production and quality of lettuce crop. Acta Hortic. 927:887-893. https://doi.org/10.17660/actahortic.2012.927.109
  26. Park, B. K. 2001. Nitrite accumulation in nitrifying SBR and CSTR. The Graduate School Yonsei University. p. 13.
  27. Pineda-Pineda, J., I. Miranda-Velazquez, J.E. Rodriguez-Perez, J.A. Ramirez-Arias, E.A. Perez-Gomez, I.N. Garcia-Antonio, and J.J. Morales-Parada. 2017. Nutrimental balance in aquaponic lettuce production. Acta Hortic. 1170:1093-1100. https://doi.org/10.17660/actahortic.2017.1170.141
  28. Rakocy, J.E., D.S. Bailey, R.C. Shultz, and E.S. Thoman. 2004. Update on tilapia and vegetable production in the UVI aquaponic system. Agricultural experiment station. p. 12-16.
  29. Rakocy, J.E., T.M. Losordo, and M.P. Masser. 2006. Recirculating aquaculture tank production systems: integrating fish and plant culture. Southern Regional Aquaculture Center: Stoneville, MS, USA. p. 1-16.
  30. Renna, M., M. Castellino, B. Leoni, V.M. Paradiso, and P. Santamaria. 2018. Microgreens production with low potassium content for patients with impaired kidney function. Nutr. 10:675-687. https://doi.org/10.3390/nu10060675
  31. Rincon, F.L.F. 2008. La fertirrigacion de la lechuga. Eediciones mundi-prensa. p. 260.
  32. Robaina, L., J. Pirhonen, E. Mente, J. Sanchez, and N. Goosen. 2019. Fish Diets in Aquaponics. Aquaponics Food Production Systems. p. 333-352.
  33. Savidov, N.A., E. Hutchings, and J.E. Racocy. 2007. Fish and plant production in a recirculating aquaponic system: a new approach to sustainable agriculture in Canada. Acta Hortic. 742:209-221. https://doi.org/10.17660/actahortic.2007.742.28
  34. Schreier, H.J., N. Mirzoyan, and K. Saito. 2010. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotech. 21:318-325. https://doi.org/10.1016/j.copbio.2010.03.011
  35. Somerville, C., M. Cohen, E. Pantanella. A. Stankus, and A. Lovatelli. 2014. Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper. p. 1-262.
  36. Thorarinsdottir, R. 2015. Aquaponics guidelines. Haskolaprent, Reykjavik, Iceland. p. 40.
  37. Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature. 418:671-677. https://doi.org/10.1038/nature01014
  38. Tyson, R.V. 2007. Reconciling pH for ammonia biofiltration in a cucumber/tilapia aquaponics system using a perlite medium. Doctoral thesis (Florida, USA). p. 120.
  39. Yang, T. and H.J. Kim. 2019. Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Sci Hortic. 256:108619. https://doi.org/10.1016/j.scienta.2019.108619
  40. Yoon, B.S. 2009. Strategies and the tasks of the local food movement. J. Rural Soc. 19:93-12.
  41. Zou, Y., Z. Hu, J. Zhang, H., Xie, C. Guimb, and Y. Fang. 2016. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 210:81-87. https://doi.org/10.1016/j.biortech.2015.12.079