DOI QR코드

DOI QR Code

Polarization of M2 Macrophages by Interaction between Prostate Cancer Cells Treated with Trichomonas vaginalis and Adipocytes

  • Chung, Hyo-Yeoung (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Kim, Jung-Hyun (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Han, Ik-Hwan (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Ryu, Jae-Sook (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine)
  • Received : 2019.12.19
  • Accepted : 2020.05.12
  • Published : 2020.06.30

Abstract

Trichomonas vaginalis causes inflammation of the prostate and has been detected in tissues of prostate cancers (PCa), prostatitis and benign prostatic hyperplasia. Obesity is a risk factor for PCa and causes a chronic subclinical inflammation. This chronic inflammation further exacerbates adipose tissue inflammation as results of migration and activation of macrophages. Macrophages are the most abundant immune cells in the PCa microenvironment. M2 macrophages, known as Tumor-Associated Macrophages, are involved in increasing cancer malignancy. In this study, conditioned medium (TCM) of PCa cells infected with live trichomonads contained chemokines that stimulated migration of the mouse preadipocytes (3T3-L1 cells). Conditioned medium of adipocytes incubated with TCM (ATCM) contained Th2 cytokines (IL-4, IL-13). Macrophage migration was stimulated by ATCM. In macrophages treated with ATCM, expression of M2 markers increased, while M1 markers decreased. Therefore, it is suggested that ATCM induces polarization of M0 to M2 macrophages. In addition, conditioned medium from the macrophages incubated with ATCM stimulates the proliferation and invasiveness of PCa. Our findings suggest that interaction between inflamed PCa treated with T. vaginalis and adipocytes causes M2 macrophage polarization, so contributing to the progression of PCa.

Keywords

References

  1. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M. Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS One 2015; 10: e0143304. https://doi.org/10.1371/journal.pone.0143304
  2. Gardner WA Jr. Culberson DE, Bennett BD. Trichomonas vaginalis in the prostate gland. Arch Pathol Lab Med 1986; 110: 430-432.
  3. Mitteregger D, Aberle SW, Makristathis A, Walochnik J, Brozek W, Marberger M, Kramer G. High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med Microbiol Immunol 2012; 201: 113-116. https://doi.org/10.1007/s00430-011-0205-2
  4. Seo MY, Im SJ, Gu NY, Kim JH, Chung YH, Ahn MH, Ryu JS. Inflammatory response of prostate epithelial cells to stimulation by Trichomonas vaginalis. Prostate 2014; 74: 441-449. https://doi.org/10.1002/pros.22766
  5. Im SJ, Han IH, Kim JH, Gu NY, Seo MY, Chung YH, Ryu JS. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis. Parasite Immunol 2016; 38: 218-227. https://doi.org/10.1111/pim.12308
  6. Han IH, Kim JH, Kim SS, Ahn MH, Ryu JS. Signalling pathways associated with IL-6 production and epithelial-mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis. Parasite Immunol 2016; 38: 678-687. https://doi.org/10.1111/pim.12357
  7. Siegel C. Re:Prostate cancer:prediction of biochemical failure after external-beam radiation therapy--Kattan nomogram and endorectal MR imaging estimation of tumor volume. J Urol 2012; 188: 432-433. https://doi.org/10.1016/j.juro.2012.04.065
  8. Karan D, Thrasher JB, Lubaroff D. Prostate cancer: genes, environment, immunity and the use of immunotherapy. Prostate Cancer Prostatic Dis 2008; 11: 230-236. https://doi.org/10.1038/pcan.2008.3
  9. Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist 2010; 15: 556-565. https://doi.org/10.1634/theoncologist.2009-0285
  10. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J Clin Oncol 2016; 34: 4270-4276. https://doi.org/10.1200/JCO.2016.67.4283
  11. Laurent V, Guerard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, Zaidi F, Majed B, Garandeau D, Socrier Y, Golzio M, Cadoudal T, Chaoui K, Dray C, Monsarrat B, Schiltz O, Wang YY, Couderc B, Valet P, Malavaud B, Muller C. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 2016; 7: 10230. https://doi.org/10.1038/ncomms10230
  12. Hefetz-Sela S, Scherer PE. Adipocytes:impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther 2013; 138: 197-210. https://doi.org/10.1016/j.pharmthera.2013.01.008
  13. Arendt LM, McCready J, Keller PJ, Baker DD, Naber SP, Seewaldt V, Kuperwasser C. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 2013; 73: 6080-6093. https://doi.org/10.1158/0008-5472.CAN-13-0926
  14. Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology 2012; 60: 199-215. https://doi.org/10.1111/j.1365-2559.2011.04033.x
  15. Lu Y, Cai Z, Xiao G, Liu Y, Keller ET, Yao Z, Zhang J. CCR2 expression correlates with prostate cancer progression. J Cell Biochem 2007; 101: 676-685. https://doi.org/10.1002/jcb.21220
  16. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression:potential targets of anti-cancer therapy. Eur J Cancer 2006; 42: 717-727. https://doi.org/10.1016/j.ejca.2006.01.003
  17. Wu HM, Zhu SL, He LJ, Liu YH, Xie D. Clinical significance of macrophage migration inhibitory factor in invasion of ovarian cancer. Ai Zheng 2009; 28: 1054-1060 (in Chinese).
  18. Braune J, Weyer U, Hobusch C, Mauer J, Bruning JC, Bechmann I, Gericke M. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 2017; 198: 2927-2934. https://doi.org/10.4049/jimmunol.1600476
  19. Bortell R, Owen TA, Ignotz R, Stein GS, Stein JL. TGF beta 1 prevents the down-regulation of type I procollagen, fibronectin, and TGF beta 1 gene expression associated with 3T3-L1 pre-adipocyte differentiation. J Cell Biochem 1994; 54: 256-263. https://doi.org/10.1002/jcb.240540214
  20. Jang KS, Han IH, Lee SJ, Yoo J, Kim YS, Sim S, Ryu JS. Experimental rat prostatitis caused by Trichomonas vaginalis infection. Prostate 2019; 79: 378-389.
  21. Kim JH, Kim SS, Han IH, Sim S, Ahn MH, Ryu JS. Proliferation of prostate stromal cell induced by benign prostatic hyperplasia epithelial cell stimulated with Trichomonas vaginalis via crosstalk with mast cell. Prostate 2016; 76: 1431-1444. https://doi.org/10.1002/pros.23227
  22. Kim JH, Han IH, Kim YS, Noh CS, Ryu JS. Proliferation of prostate epithelia induced by IL-6 from stroma reacted with Trichomonas vaginalis. Parasite Immunol 2018; 40: e12531. https://doi.org/10.1111/pim.12531
  23. Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z. Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int 2003; 91: 716-720. https://doi.org/10.1046/j.1464-410X.2003.04218.x
  24. Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, Zaldivar F, Santos R, Tyson DR, Ornstein DK. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 2009; 182: 1621-1627. https://doi.org/10.1016/j.juro.2009.06.015
  25. Xie H, Li L, Zhu G, Dang Q, Ma Z, He D, Chang L, Song W, Chang HC, Krolewski JJ, Nastiuk KL, Yeh S, Chang C. Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-beta1/Smad/MMP9 signals. Oncotarget. 2015; 6: 12326-12339. https://doi.org/10.18632/oncotarget.3619
  26. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and cancer: local and systemic mechanisms. Annu Rev Med 2015; 66: 297-309. https://doi.org/10.1146/annurev-med-050913-022228
  27. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M, Nagahara A, Aozasa K, Tsujimura A. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int 2011; 107: 1918-1922. https://doi.org/10.1111/j.1464-410X.2010.09804.x
  28. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830. https://doi.org/10.1172/JCI200319451
  29. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM. Increased macrophage migration into adipose tissue in obese mice. Diabetes 2012; 61: 346-354. https://doi.org/10.2337/db11-0860
  30. Ito Y, Ishiguro H, Kobayashi N, Hasumi H, Watanabe M, Yao M, Uemura H. Adipocyte-derived monocyte chemotactic protein-1 (MCP-1) promotes prostate cancer progression through the induction of MMP-2 activity. Prostate 2015; 75: 1009-1019. https://doi.org/10.1002/pros.22972
  31. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003; 278: 46654-46660. https://doi.org/10.1074/jbc.M309895200
  32. Galvan GC, Johnson CB, Price RS, Liss MA, Jolly CA, deGraffenried LA. Effects of Obesity on the Regulation of Macrophage Population in the Prostate Tumor Microenvironment. Nutr Cancer 2017; 69: 996-1002. https://doi.org/10.1080/01635581.2017.1359320
  33. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33: 119-126. https://doi.org/10.1016/j.it.2011.12.001
  34. Haase J, Weyer U, Immig K, Kloting N, Bluher M, Eilers J, Bechmann I, Gericke M. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 2014; 57: 562-571. https://doi.org/10.1007/s00125-013-3139-y
  35. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23-35. https://doi.org/10.1038/nri978
  36. Kim D, Yoon JH, Kim J, Ryu SH. Adipokines involved in macrophage recruitment. In Leazek Szablewski ed, Glucose Homeostasis. London UK. IntechOpen. 2014, pp133-153.
  37. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006; 66: 605-612. https://doi.org/10.1158/0008-5472.CAN-05-4005
  38. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18: 349-355. https://doi.org/10.1016/j.semcancer.2008.03.004
  39. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, Lee CH. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 2008; 7: 485-495. https://doi.org/10.1016/j.cmet.2008.04.002
  40. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation:time for reassessment. F1000Prime Rep 2014; 6: 13. https://doi.org/10.12703/p6-13
  41. Kwon H, Laurent S, Tang Y, Zong H, Vemulapalli P, Pessin JE. Adipocyte-specific IKKbeta signaling suppresses adipose tissue inflammation through an IL-13-dependent paracrine feedback pathway. Cell Rep 2014; 9: 1574-1583. https://doi.org/10.1016/j.celrep.2014.10.068
  42. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Bronneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Bruning JC. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 2014; 15: 423-430. https://doi.org/10.1038/ni.2865
  43. Lanciotti M, Masieri L, Raspollini MR, Minervini A, Mari A, Comito G, Giannoni E, Carini M, Chiarugi P, Serni S. The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy. Biomed Res Int 2014; 2014: 486798.
  44. Erlandsson A, Carlsson J, Lundholm M, Falt A, Andersson SO, Andren O, Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 2019; 79: 363-369. https://doi.org/10.1002/pros.23742
  45. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66: 1-9. https://doi.org/10.1016/j.critrevonc.2007.07.004

Cited by

  1. Signaling Role of Adipocyte Leptin in Prostate Cell Proliferation Induced by Trichomonas vaginalis vol.59, pp.3, 2021, https://doi.org/10.3347/kjp.2021.59.3.235
  2. Proliferation of Mouse Prostate Cancer Cells Inflamed by Trichomonas vaginalis vol.59, pp.6, 2020, https://doi.org/10.3347/kjp.2021.59.6.547