DOI QR코드

DOI QR Code

Comparative Analysis of Soil Microbial Communities between Conventional and Organic Farming Systems in Pepper Cultivation

관행과 유기농 고추 재배지의 토양미생물 군집 비교

  • 김이슬 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 이영미 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과)
  • Received : 2019.11.19
  • Accepted : 2020.04.10
  • Published : 2020.05.31

Abstract

Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.

작물 재배 방법이 토양의 미생물 군집 특성과 화학성에 미치는 영향을 검토하였다. 이를 위해서 다섯 곳의 고추 관행 재배지와 다섯 곳의 유기농 재배지 토양을 채취한 후, 16S rRNA 유전자 기반의 파이로시퀀싱 기법으로 미생물 군집을 조사하였다. 분석 결과 총 22개의 세균 문으로 구성되었으며 Proteobacteria 문(33.0 ± 5.7%), Actinobacteria 문(19.9 ± 9.7%) 및 Firmicutes 문(13.6 ± 5.0%)이 우점하였고, 이들은 전체 상대풍부도의 66%를 차지하였다. 고추 관행 재배지와 유기농 재배지의 미생물 군집 분포를 비교했을 때 전반적으로 서로 다른 군집 특성을 나타내었다. 또한 관행 재배 토양에서는 Actinobacteria 문과 Chloroflexi 문이 상대적으로 풍부하였고, 유기 재배 토양에서는 Proteobacteria 문과 Firimicutes 문이 상대적으로 풍부하였다. 특히 Streptomyces 속과 Bacillus 속의 상대풍부도는 관행 재배 토양과 유기 재배 토양 간에 상당한 차이를 보였다. 또한 토양 화학 성에 의하여 세균 군집 변화가 관찰되었는데, Proteobacteria 문의 Rhizobiales 목과 Actinobacteria 문의 Streptomyces 속은 pH에 의해 세균 군집이 바뀌었고, Firimicutes 문의 Bacillus 속은 유기물 함량에 의해 군집 분포가 바뀌었다. 본 연구결과는 재배관리에 따른 토양의 물리-화학성의 변화가 미생물 군집 분포에 뚜렷하게 관련(p<0.05)되어 있다는 것을 보여주었다.

Keywords

References

  1. Ahn, J. H., B. Y. Kim, D. H. Kim, J. Song, and H. Y. Weon. 2012. Application of amplicon pyrosequencing in soil microbial ecology. Korean J. Soil Sci. Fert. 45(6): 1073-1085. https://doi.org/10.7745/KJSSF.2012.45.6.1073
  2. Araujo A. S. F. and W. J. Melo. 2010. Soil microbial biomass in organic farming system. Ciencia Rural, Santa Maria. 40(11): 2419-2426. https://doi.org/10.1590/S0103-84782010001100029
  3. Barak, P., B. O. Jobe, A. R. Krueger, L. A. Peterson, and D. A. Laird. 1997. Effects of longterm soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil. 197: 61-69. https://doi.org/10.1023/A:1004297607070
  4. Chaudhry, V., A. Rehman, A. Mishra, P. Chauhan, and C. S. Nautiyal. 2012. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64: 450-460. https://doi.org/10.1007/s00248-012-0025-y
  5. Cho, H. J., S. W. Hwang, K. H. Han, H. R. Cho, J. H. Shin, and L. Y. Kim. 2009. Physicochemical properties of upland soils under organic farming. Korean J. Soil Sci. Fert. 42(2): 98-102
  6. Choi, B. S., J. A. Jung, M. K. Oh, S. H. Jeon, H. G. Goh, Y. S. Ok, and J. K. Sung. 2010. Effects of green manure crops on improvement of chemical and biological properties in soil. Korean J. Soil Sci. Fert. 43(5): 650-658.
  7. Chung, J. B., and Y. J. LEE. 2008. Comparison of soil nutrient status in conventional and organic apple farm. Korean. Soc. Soil Sci. Fert. 41(1): 26-33.
  8. Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity and J. M. Tiedje. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145. https://doi.org/10.1093/nar/gkn879
  9. Esperschutz, J., A. Gattinger, P. Mader, M. Schloter, and A. Fliessbach. 2007. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS. Microbiol. Ecol. 61: 26-37. https://doi.org/10.1111/j.1574-6941.2007.00318.x
  10. Hartmann, M., B. Frey, J. Mayer, P. Mäder, and F. Widmer. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. J. ISME. 9: 1177-1194. https://doi.org/10.1038/ismej.2014.210
  11. Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60: 579-598. https://doi.org/10.1007/s13213-010-0117-1
  12. Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee, and J. T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods. 58: 169-188. https://doi.org/10.1016/j.mimet.2004.04.006
  13. Lauber, C. L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111-5120. https://doi.org/10.1128/AEM.00335-09
  14. Lee, S. T., D. C. Seo, J. S. Cho, E. S. Kim, W. D. Song, and Y. H. Lee. 2011. Influence of cultivated regions in organic and conventional farming paddy field. Korean J. Soil Sci. Fert. 44(3): 408-414. https://doi.org/10.7745/KJSSF.2011.44.3.408
  15. Lee, Y., J. H. Ahn, Y. M. Choi, H. Y. Weon, J. H. Yoon, and J. Song. 2015. Bacterial core community in soybean rhizosphere. Korean J. Microbiol. 51(4): 347-354. https://doi.org/10.7845/kjm.2015.5052
  16. Li, R., E. Khafipour, D. O. Krause, M. H. Entz, T. R. de Kievit, and W. G. Dilantha Fernando. 2012. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS ONE. 7(12): e51897. https://doi.org/10.1371/journal.pone.0051897
  17. Liao, J., Y. Liang, and D. Huang. 2018. Organic farming improves soil microbial abundance and diversity under greenhouse condition: a case study in shanghai (Eastern China). Sustainability. 10: 3825. https://doi.org/10.3390/su10103825
  18. Liu, B., C. Tu, S. Hu, M. Gumpertz, and J. B. Ristaino. 2007. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil. Ecol. 37: 202-214. https://doi.org/10.1016/j.apsoil.2007.06.007
  19. Lori, M., S. Symnaczik, P. Mäder, G. De Deyn, and A. Gattinger. 2017. Organic farming enhances soil microbial abundance and activity-a meta-analysis and meta-regression. PLoS One. 12: e0180442-e0180442. https://doi.org/10.1371/journal.pone.0180442
  20. Lupatini, M., G. Korthals, M. de Hollander, T. Janssens, and E. Kuramae. 2017. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 7: 2064.
  21. Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science. 296: 1694-1697. https://doi.org/10.1126/science.1071148
  22. NIAST. 2002. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  23. Oehl, F., E. Sieverding, K. Ineichen, P. Mader, T. Boller, and A. Wiemken. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69: 2816-2824. https://doi.org/10.1128/AEM.69.5.2816-2824.2003
  24. Orr, C. H., A. James, C. Leifert, J. M. Cooper, and S. P. Cummings. 2011. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl. Environ. Microbiol. 77(3): 911-919. https://doi.org/10.1128/AEM.01250-10
  25. Pershina, E., J. Valkonen, P. Kurki, E. Ivanova, E. Chirak, I. Korvigo, N. Provorov, and E. Andronov. 2015. Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One. 10: e0145072-e0145072. https://doi.org/10.1371/journal.pone.0145072
  26. Pimentel, D., P. Hepperly, J. Hanson, D. Douds, and R. Seidel. 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. J. Biosci. 55: 573-582. https://doi.org/10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2
  27. Pruesse, E., J. Peplies, and F. O. Glockner. 2012. Sina: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  28. Quince, C., A. Lanzen, R. J. Davenport, and P. J. Turnbaugh. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12: 38. https://doi.org/10.1186/1471-2105-12-38
  29. Ramirez, K. S., C. L. Lauber, R. Knight, M. A. Bradford, and N. Fierer. 2010. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 91: 3463-3470. https://doi.org/10.1890/10-0426.1
  30. RDA. 2013. Pepper. Agricultural technic guideline. RDA, Suwon, Korea.
  31. RDA. 2009. Pepper. Organic cultivation manual. RDA, Suwon, Korea.
  32. Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, and C. J. Robinson. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  33. Shokralla, S., J. Spall, J. Gibson, and M. Hajibabaei. 2012. Next-generation sequencing technologies for enviromental DNA research. Mol. Ecol. 21: 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
  34. Stagnari, F., G. Perpetuini, R. Tofalo, G. Campanelli, F. Leteo, U. Della Vella, M. Schirone, G. Suzzi, and M. Pisante. 2014. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front Microbiol. 5: 644-644.
  35. Torjusen, H., G. Lieblein, M. Wandel, and C. A. Francis. 2001. Food system orientation and quality perception among consumers and producers of organic food in Hedmark County, Norway. Food Qual. Prefer. 12: 207-216. https://doi.org/10.1016/S0950-3293(00)00047-1
  36. van Diepeningen, A. D., O. J. de Vos, G. W. Korthals, and A. H. C. van Bruggen. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil. Ecol. 31: 120-135. https://doi.org/10.1016/j.apsoil.2005.03.003
  37. Wright, S. F., J. L. Starr, and I. C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. J. Soil. Sci. Soc. Am. 63: 1825-1829. https://doi.org/10.2136/sssaj1999.6361825x
  38. Xue, K., L. Wu, Y. Deng, Z. He, J. V. Nostrand, P. G. Robertson, T. M. Schmidt, and J. Zhou. 2013. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl. Environ. Microbiol. 79: 1284-1292. https://doi.org/10.1128/AEM.03393-12
  39. Zikeli, S., L. Deil, and K. Moller. 2017. The challenge of imbalanced nutrient flows in organic farming systems: a study of organic greenhouses in Southern Germany. Agric. Ecosyst. Environ. 244: 1-13. https://doi.org/10.1016/j.agee.2017.04.017