DOI QR코드

DOI QR Code

Response of Organic Fertilizer Application Rates and Different Harvesting Periods on Forage Yield and Quality of Kenaf (Hibiscus cannabinus L.)

유기질비료의 시용과 수확시기가 Kenaf (Hibiscus cannabinus L.)의 생산성과 사료가치에 미치는 영향

  • 조익환 (대구대학교 동물자원학과) ;
  • Received : 2020.09.11
  • Accepted : 2020.11.18
  • Published : 2020.11.30

Abstract

The objective of present experiment was to examine the impact of different organic nitrogen (N) fertilizer application rates and different harvesting periods on the forage yield and feed value of kenaf (Hibiscus cannabinus L.). This study was carried out from May to September 2019, the amount of 80 kg of kenaf seed/ha were applied with different rates of nitrogen fertilizer. The plants were sampled at 10 days intervals (100, 110, 120, and 130 days after seeding) from different harvesting dates. In the organic fertilizer treatments, the highest dry matter (DM) yield was observed in the application rate at 250 kg of N/ha. Crude protein (CP) content in leaves was similar between the organic fertilizer rates at 200 and 250 kg of N/ha and were higher compared with other fertilizer treatments. The highest CP content in the stem was 4.3% in the organic fertilizer application rates st 250 kg of N/ha. Neutral detergent fiber (NDF) in leaves showed no significant difference between the chemical fertilizer rates at 200 and 250 kg of N/ha, and the organic fertilizer rates at 150 and 250 kg of N/ha. In addition, DM yield of kenaf was highest in the harvest of 100 days after seeding, and tended to decreased significantly with increase of harvesting periods (p<0.05). As the growth progressed, the plant height and stem ratio increased but the leaves ratio decreased significantly (p<0.05) and the highest was found at 110 days after seeding. The highest CP, Acid detergent fiber (ADF), NDF and total digestible nutrient (TDN) contents in leaves were 13.9, 25.4, 40.5 and 71.1%, respectively that were affected by different harvesting periods. Also, the ADF and NDF in stem increased significantly with increase of kenaf maturity (p<0.05). In conclusion, the optimal organic fertilizer application rates and the proper harvesting periods for the forage yield and quality of kenaf were at 200 to 250 kg of N/ha, and 100 to 110 days after seeding, respectively.

하계사료작물로 케나프를 재배할 시에 유기 및 화학비료의 질소공급원과 수확시기를 달리하였을 때 케나프의 생산성과 양질의 조사료를 얻기 위해 적정 질소시용수준과 수확시기를 구명하고자 실시되었다. 질소공급원에 따른 케나프의 건물수량은 화학비료 처리 구가 다소 높았지만, 유기질비료를 ha 당 200~250 kg의 수준에서는 화학비료 처리 구와 유의한 차이가 인정되지 않았고 사료가치 특히 조단백질과 TDN 함량은 오히려 유기질비료 처리 구에서 유의하게 높게 나타나(p<0.05), 반추동물에게 양질의 조사료 공급원으로 이용하고자 케나프가 재배된다면 유기질비료가 화학비료를 대체할 수 있음을 시사하였다. 한편 수확시기에 따른 건물수량은 100일째가 다른 수확시기보다 유의하게 높았지만 100~110일 수확시기가 수량구성요인 중 잎의 비율이 줄기보다도 높았고 사료가치 중 조단백질과 TDN 함량이 다른 수확시기보다 높게 나타났으며 ADF와 NDF 함량은 크게 감소하였다(p<0.05). 본 연구의 결과 특히 건물수량과 사료가치를 비교해 볼 때 적절한 질소공급원으로 유기질비료를 시용 시에는 ha당 200~250 kg 정도가 적절하고 수확시기는 100~110일이 적합하다고 사료된다.

Keywords

Acknowledgement

본 연구는 2019학년도 대구대학교 학술연구비 지원으로 수행되었음.

References

  1. Anut, C., C. Chaikong, O. Chinrasri, and P. Kangkun. 2009. Evaluation of Yield and Nutritive Value of Kenaf (Hibiscus cannabinus L) at Various Stages of Maturity. Pakistan J. Nut. 8(7): 1055-1058.
  2. AOAC. 2000. Official methods of analysis of the AOAC. 17th Edition, Association of Official Analytical Chemists, Gaithersburg, USA.
  3. Cho, N. K., C. K. Song, Y. Cho, and J. B. Ko. 2001. Effect of Nitrogen rate on agronomic charasteristics, forage yield and chemical composition of kenaf in Jeju Island. Korean Grassl. Sci. 21(2): 59-66.
  4. Clark, T. F. and I. A. Wolff. 1969. A search for new fiber crops, XI. Compositional characteristics of Illinois kenaf at several population densities and maturities. TAPPI J. 52(11): 211-216.
  5. FAO. 2018. http://www.fao.org/3/i8384en/I8384EN.pdf
  6. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis. Agic. Handbook No. 379. ARS. USDA. Washington, D. C.
  7. Hossain, M. D., M. H. Musa, J. Talib, and J. Hamdan. 2010. Effects of Nitrogen, Phosphorus and Potassium Levels on Kenaf (Hibiscus cannabinus L.) Growth and Photosynthesis under Nutrient Solution. J. Agric. Sci. 2(2): 49-57.
  8. Hwangbo, S. and I. H. Jo. 2013. Effects of applying cattle slurry and Mixed sowing with legumes on productivity, feed values and organic stock carrying capacity of winter forage crops in Gyeongbuk regions. Korean J. Organic Agric. 21(3): 451-465.
  9. Jo, I. H. 2003. A Study on area types of recycling agriculture. Korean J. Organic Agric. 11(3): 91-108.
  10. Jung, J. S., G. J. Choi, and B. R. Choi. 2019. Effect of Waterlogging Duration on Growth Characteristics and Productivity of Forage Corn at Different Growth Stages under Paddy Field Conditions. J. Korean Soc. Grassl. Forage Sci. 39(3): 141-147.
  11. Kang, C. H., I. S. Lee, D. Y. Go, H. J. Kim, and Y. E. Na. 2018. The Growth and Yield Differences in Kenaf (Hibiscus cannabinus L.) in Reclaimed Land Based on the Physical Types of Organic Materials. Korean J. Crop Sci. 63(1): 64-71.
  12. Kim, B. W., K. I. Sung, J. G. Nejad, and J. S. Shin. 2012. Nutritive Value and Fermentation Quality of the Silage of Three Kenaf (Hibiscus cannabinuas L.) Cultivars at Three Different Growth Stages. J. Korean Soc. Grassl. Forage Sci. 32(4): 353-360.
  13. Linn, J. and N. Martin. 1989. Forage quality tests and interpretation. The University of Minnesota Ext. Serv. AG-FO-2637. Minnesota.
  14. Masnira, M. Y., R. A. Halim, M. Y. Rafii, J. S. Mohd, and M. Y. Martini. 2015. Yield and Quality of Two Kenaf Varieties as Affected by Harvesting Age. J. Inter. Soc. for Southeast Asian Agric. Sci. 21(2): 129-142.
  15. Minson, D. J. 1990. Forage in Ruminant Nutrition. Pages 1-8.
  16. Muir, J. P. 2002. Effect of dairy compost application and plant maturity on forage kenaf cultivar fiber concentration and in sacco disappearance. Crop Sci. 42(1): 248-254.
  17. Nahm, K. H. 1992. Practical guide to feed, forage and water analysis. Yoohan Pub. 1-70.
  18. Nam, C. H., K. S. Kim, M. H. Park, W. H. Kim, H. J. Ji, K. C. Choi, and S. S. Sun. 2018. Effects of Seeding and Organic Fertilizer Rates and Harvest time on Kenaf Yield and Feed Value. J. Korean Soc. Grassl. Forage Sci. 38(2): 91-98.
  19. Oh, S. J., D. T. Mbiriri, C. H. Ryu, K. H. Lee, S. B. Cho, and N. J. Choi. 2018. In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle. Asian-Austral. J. Animal Sci. 31(10): 1598-1603.
  20. Phillips, W. A., G. Q. Fitch, F. T. McCollum III, R. S. Adams, and G. Hartnell. 1999. Kenaf Dry Matter Production, Chemical Composition, and In Situ Disappearance When Harvested at Different Intervals. Prof. Animal Sci. 15(1): 34-39.
  21. Phillips, W. A., R. R. Reuter, and M. A. Brown. 2002. Growth and performance of lambs fed finishing diet containing either alfalfa or kenaf as the roughage source. Small Rumin. Res. 46: 75-9.
  22. Rural Development Administration. 2012. Standardization for research survey on agricultural science and technology. pp. 339-358. Korea.
  23. Saheb, A. M., M. M. Hoque, M. N. Gani, and M. M. Islam. 2017. Variation in Inorganic Fertilizer Is an Important Regulator of Yield Potential in BJRI Mesta-3. American J. Environ. Engin. Sci. 4(6): 78-84.
  24. SAS. 2016. Statistical Analysis System ver. 9.1. SAS Institute Inc. Cary, NC.
  25. Swingle, R., A. Urias, J. Doyle, and R. Voigt. 1978. Chemical composition of kenaf forage and its digestability by lambs and in vitro. J. Animal Sci. 46: 1346-1350.
  26. Taylor, C. S. 1992. Kenaf: annual fiber crop products generate a growing response from industry: new crops, new uses, and new markets. In: 1992 Yearbook of Agriculture. Office of Publishing and Visual Communication, USDA, Washington, DC, pp. 92-98 Part III.
  27. Webber III, C. L. and V. K. Bledsoe. 2002. Plant maturity and kenaf yield components. Ind. Crops Prod. 16(2): 81-88
  28. Webber III, C. L. 1993. Crude protein and yield components of six kenaf cultivars as affected by crop maturity. Ind. Crops Prod. 2: 27-31.