DOI QR코드

DOI QR Code

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Rusli, S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Tan, M.L.P. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • Received : 2020.02.28
  • Accepted : 2020.07.28
  • Published : 2020.08.25

Abstract

Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Keywords

Acknowledgement

The authors acknowledge the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing excellent support and conducive research environment. Mu Wen expresses his appreciation for the award of PhD Zamalah Scholarship from the School of Graduate Studies, UTM. Michael Tan would like to acknowledge the financial support from UTM Fundamental Research (UTMFR) (Vote No. Q.J130000.2551.21H51) that allowed the research to proceed smoothly.

References

  1. Akinwande, D., Huyghebaert, C., Wang, C.H., Serna, M.I., Goossens, S., Li, L.J., Wong, H.S.P. and Koppens, F.H. (2019), "Graphene and two-dimensional materials for silicon technology", Nature, 573(7775), 507-518. https://doi.org/10.1038/s41586-019-1573-9.
  2. Ali, M., Pi, X., Liu, Y. and Yang, D. (2017), "Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration", AIP Adv., 7(4), 045308. https://doi.org/10.1063/1.4980836.
  3. Arora, V.K. (2015), Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles, CRC Press, USA. https://doi.org/10.1201/b18131.
  4. Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H. and Ciraci, S. (2009), "Two-and one-dimensional honeycomb structures of silicon and germanium", Phys. Rev. Lett., 102(23), 236804. https://doi.org/10.1103/PhysRevLett.102.236804.
  5. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H. and Neto, A.H.C. (2016), "Phosphorene: from theory to applications", Nat. Rev. Mater., 1(11), 16061. https://doi.org/10.1038/natrevmats.2016.61.
  6. Chai, T. and Draxler, R.R. (2014), "Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature", Geosci. Model Dev., 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
  7. Chen, J., Wang, X.F., Vasilopoulos, P., Chen, A.B. and Wu, J.C. (2014), "Single and multiple doping effects on charge transport in zigzag silicenen anoribbons", Chemphyschem, 15(13), 2701-2706. https://doi.org/10.1002/cphc.201402171.
  8. Chuan, M.W., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020), "Electronic properties of zigzag silicene nanoribbons with single vacancy defect", Indones. J. Electr. Eng. Comput. Sci., 19(1), 76-84. http://doi.org/10.11591/ijeecs.v19.i1.pp76-84.
  9. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020) "2D honeycomb silicon : a review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.
  10. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020) "Electronic properties and carrier transport properties of low-dimensional aluminium doped silicenen anostructure", Physica E Low Dimens. Syst. Nanostruct., 116, 113731. https://doi.org/10.1016/j.physe.2019.113731.
  11. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020) "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlattices Microstruct., 140, 106429. https://doi.org/10.1016/j.spmi.2020.106429.
  12. Datta, S. (2000), "Nanoscale device modeling : the Green's function method", Superlattices Microstruct., 28(4), 253-278. https://doi.org/10.1006/spmi.2000.0920.
  13. Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, UK. https://doi.org/10.1017/CBO9781139164313.
  14. Ding, Y. and Ni, J. (2009), "Electronic structures of silicon nanoribbons", Appl. Phys. Lett., 95(8), 083115. https://doi.org/10.1063/1.3211968.
  15. Ding, Y. and Wang, Y. (2013), "Density functional theory study of the silicene-like SiX and $XSi_3$ (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties", J. Phys. Chem. C, 117(35), 18266-18278. https://doi.org/10.1021/jp407666m.
  16. Durgun, E., Tongay, S. and Ciraci, S. (2005), "Silicon and III-V compound nanotubes: structural and electronic properties", Phys. Rev. B, 72(7), 075420. https://doi.org/10.1103/PhysRevB.72.075420.
  17. Ferrari, A.C., Bonaccorso, F., Fal'Ko, V., Novoselov, K.S., Roche, S., Boggild, P., Borini, S., Koppens, F.H., Palermo, V. and Pugno, N. (2015), "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, 7(11), 4598-4810. https://doi.org/10.1039/c4nr01600a.
  18. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. and Zhi, C. (2010), "Boron nitride nanotubes and nanosheets", ACS Nano, 4(6), 2979-2993. https://doi.org/10.1021/nn1006495.
  19. Guzman-Verri, G.G. and Voon, L.L.Y. (2007), "Electronic structure of silicon-based nanostructures", Phys. Rev. B, 76(7), 075131. https://doi.org/10.1103/PhysRevB.76.075131.
  20. Harrison, W.A. (2004), Elementary Electronic Structure: Revised, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/5432.
  21. Iordanidou, K., Houssa, M., van den Broek, B., Pourtois, G., Afanas'ev, V. and Stesmans, A. (2016), "Impact of point defects on the electronic and transport properties of silicene nanoribbons", J. Phys. Condens. Matter., 28(3), 035302. https://doi.org/10.1088/0953-8984/28/3/035302.
  22. Jiang, Q., Zhang, J., Ao, Z., Huang, H. and Wu, Y. (2018), "Tuneable electronic and magnetic properties of hybrid silicene/silicane nanoribbons induced by nitrogen doping", Thin Solid Films, 653 126-135. https://doi.org/10.1016/j.tsf.2018.03.004.
  23. Leong, C.H., Chuan, M.W., Wong, K.L., Najam, F., Yu, Y.S. and Tan, M.L.P. (2020), "Compact device modelling of interface trap charges with quantum capacitance in $MoS_2$-based fieldeffect transistors", Semicond. Sci. Technol., 35(4), 045023. https://doi.org/10.1088/1361-6641/ab74f2.
  24. LeSar, R. (2013), Introduction to Computational Materials Science: Fundamentals to Applications, Cambridge University Press, UK. https://doi.org/10.1017/CBO9781139033398.
  25. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017), "Band gap engineering of BC2N for nanoelectronic applications", Superlattices Microstruct., 112, 328-338. https://doi.org/10.1016/j.spmi.2017.09.040.
  26. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2018), "Performance an alysis of one dimensional BC2N for nanoelectronics applications", Physica E Low Dimens. Syst. Nanostruct., 102 33-38. https://doi.org/10.1016/j.physe.2018.04.005.
  27. Liu, C.C., Jiang, H. and Yao, Y. (2011), "Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin", Phys. Rev. B., 84(19), 195430. https://doi.org/10.1103/PhysRevB.84.195430.
  28. Liu, G., Wu, M., Ouyang, C. and Xu, B. (2012), "Strain-induced semimetal-metal transition in silicene", EPL., 99(1), 17010. https://doi.org/10.1209/0295-5075/99/17010.
  29. Lopez-Bezanilla, A. (2014), "Substitutional doping widens silicene gap", J. Phys. Chem. C, 118(32), 18788-18792. https://doi.org/10.1021/jp5060809.
  30. Low, S. and Shon, Y.S. (2018), "Molecular interactions between pre-formed metal nanoparticles and graphene families", Adv. Nano Res., Int. J., 6(4), 357-375. https://doi.org/10.12989/anr.2018.6.4.357.
  31. Mehdi Aghaei, S. and Calizo, I. (2015), "Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes", J. Appl. Phys., 118(10), 104304. https://doi.org/10.1063/1.4930139.
  32. Menezes, M.G. and Capaz, R.B. (2018), "Tight binding parametrization of few-layer black phosphorus from first-principles calculations", Comput, Mater, Sci., 143, 411-417. https://doi.org/10.1016/j.commatsci.2017.11.039.
  33. Molle, A., Grazianetti, C., Tao, L., Taneja, D., Alam, M.H. and Akinwande, D. (2018), "Silicene, silicene derivatives, and their device applications", Chem. Soc. Rev., 47(16), 6370-6387. https://doi.org/10.1039/c8cs00338f.
  34. Najam, F., Lau, K.C., Lim, C.S., Yu, Y.S. and Tan, M.L.P. (2016), "Metal oxide-graphene field-effect transistor: interface trap density extraction model", Beilstein J. Nanotechnol., 7(1), 1368-1376. https://doi.org/10.3762/bjnano.7.128.
  35. Ni, Z., Zhong, H., Jiang, X., Quhe, R., Luo, G., Wang, Y., Ye, M., Yang, J., Shi, J. and Lu, J. (2014), "Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors", Nanoscale, 6(13), 7609-7618. https://doi.org/10.1039/c4nr00028e.
  36. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  37. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M.I., Grigorieva, I., Dubonos, S.V and Firsov, A.A. (2005), "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438(7065), 197-200. https://doi.org/10.1038/nature04233.
  38. Qin, R., Wang, C.H., Zhu, W. and Zhang, Y. (2012), "First-principles calculations of mechanical and electronic properties of silicene under strain", AIP Adv., 2(2), 022159. https://doi.org/10.1063/1.4732134.
  39. Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., Int. J., 5(3), 231-244. https://doi.org/10.12989/anr.2017.5.3.231.
  40. Roome, N.J. and Carey, J.D. (2014), "Beyond graphene: stable elemental monolayers of silicene and germanene", ACS Appl. Mater. Interfaces, 6(10), 7743-7750. https://doi.org/10.1021/am501022x.
  41. Shao, Z.G., Ye, X.S., Yang, L. and Wang, C.L. (2013), "First-principles calculation of intrinsic carrier mobility of silicene", J. Appl. Phys., 114(9), 093712. https://doi.org/10.1063/1.4820526.
  42. Song, Y.L., Zhang, Y., Zhang, J.M., Lu, D.B. and Xu, K.W. (2011), "First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies", J. Mol. Struct., 990(1-3), 75-78. https://doi.org/10.1016/j.molstruc.2011.01.020.
  43. Takeda, K. and Shiraishi, K. (1994), "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite", Phys. Rev. B, 50(20), 14916. https://doi.org/10.1103/PhysRevB.50.14916.
  44. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A. and Akinwande, D. (2015), "Silicene field-effect transistors operating at room temperature", Nat. Nanotechnol., 10(3), 227-231. https://doi.org/10.1038/NNANO.2014.325.
  45. Waldrop, M.M. (2016), "More than Moore", Nature, 530(7589), 144-148. https://doi.org/10.1038/530144a.
  46. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N. and Strano, M.S. (2012), "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides", Nat. Nanotechnol., 7(11), 699-712. https://doi.org/10.1038/NNANO.2012.193.
  47. Wang, Y., Huang, R., Kong, F., Gao, B., Li, G., Liang, F. and Hu, G. (2019), "Tunable electronic and optical properties of the $MoS_2/MoSe_2$ heterostructure nanotubes", Superlattices Microstruct., 132, 106156. https://doi.org/10.1016/j.spmi.2019.106156.
  48. Watts, M.C., Picco, L., Russell-Pavier, F.S., Cullen, P.L., Miller, T.S., Bartus, S.P., Payton, O.D., Skipper, N.T., Tileli, V. and Howard, C.A. (2019), "Production of phosphorene nanoribbons", Nature, 568(7751), 216-220. https://doi.org/10.1038/s41586-019-1074-x.
  49. Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 209-221. https://doi.org/10.12989/anr.2019.7.3.209.
  50. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020), "Performance metrics of current transport in pristine graphene nanoribbon field effect transistors using recursive non-equilibrium Green's function approach", Superlattices Microstruct., 145, 106624. https://doi.org/10.1016/j.spmi.2020.106624.
  51. Yang, C., Yu, Z., Lu, P., Liu, Y., Ye, H. and Gao, T. (2014), "Phonon instability and ideal streng th of silicene under tension", Comput. Mater. Sci., 95, 420-428. https://doi.org/10.1016/j.commatsci.2014.07.046.
  52. Xue, P., Chen, A., Zhang, J. and Shao, Q. (2019), "Transport properties of doped zigzag graphene nanoribbons", Chinese J. Phys., 57, 47-52. https://doi.org/10.1016/j.cjph.2018.12.014.
  53. Yang, X. and Ni, J. (2005), "Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes", Phys. Rev. B. 72(19), 195426. https://doi.org/10.1103/PhysRevB.72.195426.
  54. Ye, P., Ernst, T. and Khare, M.V. (2019), "The last silicon transistor: Nanosheet devices could be the final evolutionary step for Moore's law", IEEE Spectrum, 56(8), 30-35. https://doi.org/10.1109/MSPEC.2019.8784120.
  55. Zhang, J.M., Song, W.T., Xu, K.W. and Ji, V. (2014), "The study of the P doped silicene nanoribbons with first-principles", Comput. Mater. Sci., 95, 429-434. https://doi.org/10.1016/j.commatsci.2014.08.019.
  56. Zhao, J., Liu, H., Yu, Z., Quhe, R., Zhou, S., Wang, Y., Liu, C.C., Zhong, H., Han, N. and Lu, J. (2016), "Rise of silicene: a competitive 2D material", Prog. Mater. Sci., 83, 24-151. https://doi.org/10.1016/j.pmatsci.2016.04.001.

Cited by

  1. Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.091