DOI QR코드

DOI QR Code

Assessment of future stream flow and water quality of Man-gyeong river watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT

SWAT을 이용한 극한 기후변화 시나리오와 유역간 물이동 변화를 고려한 만경강 유역의 미래 수문 및 수질 평가

  • Woo, So-Young (Graduate School of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Lee, Ji-Wan (School of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Yong-Won (Graduate School of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong-Joon (School of Civil and Environmental Engineering, Konkuk University)
  • 우소영 (건국대학교 대학원 사회환경플랜트공학과) ;
  • 이지완 (건국대학교 대학원 사회환경플랜트공학과) ;
  • 김용원 (건국대학교 대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2020.06.24
  • Accepted : 2020.07.10
  • Published : 2020.08.31

Abstract

The purpose of this study is to assess the future hydrological and water quality change of Man-gyeong river basin (1,602 ㎢) based on future extreme climate change scenarios and reduction of inter-basin water transfer amount using SWAT (Soil and Water Assessment Tool). The SWAT was calibrated (2012~2014) and validated (2016~2018) at 2 water level observation stations (DC, JJ) and 2 water quality observation stations (SR, GJ) considering inter-basin water transfer amount, stream water withdrawal, and point source data. For the streamflow, the coefficient of determination (R2) was 0.70 and the average Nash-Sutcliffe efficiency (NSE) was 0.51 respectively. For the water quality of SS, T-N, and T-P, the R2 was 0.72, 0.80 and 0.72 respectively. The future average streamflow under climate change scenarios increased up to 459 mm/yr, and average SS, T-N and T-P yields also increased up to 19,548 ton/yr, 68,748 kg/yr, and 13,728 kg/yr respectively. When the amount of inter basin water transfer decreased, the streamflow especially decreased in spring and winter periods, and the future water quality yields increased under the influence of precipitation. In order to solve the deterioration of water quality due to decrease in the flow rate and an increase in the load, the amount of inter basin water transfer should be maintained to a certain level.

본 연구에서는 만경강유역(1,602 ㎢)을 대상으로 SWAT(Soil and Water Assessment Tool)을 이용하여 미래 극한 기후변화 시나리오와 유역간 물이동 감소에 따른 유역의 수문 수질 변화를 미래기간(S1: 2010~2039, S2: 2040~2069, S3: 2070~2099)로 구분하여 평가하였다. 이를 위해 유역간 물이동량, 유역내 취수량, 점 오염원 등을 고려하여 SWAT 모형을 구축 후 수위 관측소 2지점(대천, 전주), 수질 관측소 2지점(삼례, 김제)에 대하여 유출량과 부하량을 보정(2012~2014년) 및 검증(2016~2018년)하였다. 검보정 결과 유출량의 평균 R2는 0.7, NSE는 0.51이었으며, SS, T-N, T-P의 평균 R2는 0.72, 0.80, 0.72로 분석되었다. 미래 기후변화에 따른 연평균 유출량은 최대 459 mm/yr 증가하였으며, 연평균 SS, T-N, T-P 부하량은 각각 최대 19,548 ton/yr, 68,748 kg/yr, 13,728 kg/yr 증가하였다. 미래 유역간 물 이동량이 감소하였을 때, 봄과 겨울에 유출량이 감소하였으며, 미래 수질 부하량은 강수량의 영향으로 과거 관측 기간보다 증가하였다. 유출량 감소와 부하량 증가로 인한 수질 악화를 개선하기 위해서는 유역간 물이동이 일정 수준으로 지속되어야 할 것으로 판단된다.

Keywords

References

  1. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., and Jha, M.K., (2012). "SWAT: Model use, calibration, and validation." Transactions of the ASABE, ASABE, Vol. 55, No. 4, pp. 1491-1508. https://doi.org/10.13031/2013.42256
  2. Arnold, J.G., Williams, J.R., Srinivasan, R., and King, K.W. (1996). "SWAT manual." USDA, Agricultural Research Service and Blackland Research Center, T.X., U.S.
  3. Bae, D.H., Jung, I.W., and Kwon, W.T. (2007). "Generation of high resolution scenarios for climate change impacts on water resources (I): Climate scenarios on each sub-basins." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 3, pp. 191-204. https://doi.org/10.3741/JKWRA.2007.40.3.191
  4. Davies, B.R., Thoms, M., and Meador, M. (1992). "An assessment of the ecological impacts of inter‐basin water transfers, and their threats to river basin integrity and conservation." Aquatic conservation: Marine and freshwater ecosystems, John Wiley & Sons Inc., Vol. 2, No. 4, pp. 325-349. https://doi.org/10.1002/aqc.3270020404
  5. European Union (EU) (2005). STARDEX Diagnostic Extremes Indices Software User Information, STARDEX, accessed 23 October 2018, .
  6. Gu, W., Shao, D., and Jiang, Y. (2012). "Risk evaluation of water shortage in source area of middle route project for South-to- North Water Transfer in China." Water resources management, Kluwer Academic Publishers, Vol. 26, No. 12, pp. 3479-3493. https://doi.org/10.1007/s11269-012-0086-1
  7. Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, p. 151.
  8. Jeung, S.-J., Sung, J.H., and Kim, B.-S. (2013). "Change projection of extreme indices using RCP climate change scenario." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 11, pp. 1089-1101. https://doi.org/10.3741/JKWRA.2013.46.11.1089
  9. Karamouz, M., Mojahedi, S.A., and Ahmadi, A. (2010). "Interbasin water transfer: Economic water quality-based model." Journal of irrigation and drainage engineering, ASCE, Vol. 136, No. 2, pp. 90-98. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000140
  10. Kim, B.K., and Kim, B.S. (2009). "Analysis of impact climate change on extreme rainfall using B2 climate change scenario and extreme indices." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 29, No. 1B, pp. 23-33.
  11. Kim, Y.W., Lee, J.W., and Kim. S.J. (2018). "Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 10, pp. 905-916. https://doi.org/10.3741/JKWRA.2018.51.10.905
  12. Kim, Y.W., Lee, J.W., Woo, S.Y., and Kim. S.J. (2020). "Inter-basin water transfer modeling from Seomjin river to Yeongsan river using SWAT." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 1, pp. 57-70. https://doi.org/10.3741/JKWRA.2020.53.1.57
  13. Kwon, H.-H., Kim, B.-S., and Kim, B.-K. (2008). "Analysis of precipitation characteristics of regional climate model for climate change impacts on water resources." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 5B, pp. 525-533.
  14. Luzio, M.D., Srinivasan, R., and Arnold, J.G. (2002). "Integration of watershed tools and SWAT model into basins." Journal of the American Water Resources Association, AWRA, Vol. 38, No. 4, pp. 1127-1141. https://doi.org/10.1111/j.1752-1688.2002.tb05551.x
  15. Ministry of Land, Transport and Maritime Affairs (MOLIT) (2008). International Hydrologic Project (IHP) research report. Ministry of Land, Transport and Maritime Affairs, pp. 4.1-4.48.
  16. Nash, J. E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." Journal of Hydrology, Elsevier BV, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  17. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2001). Soil and water assessment tool; the theoretical documentation. U.S Agricultural Research Service,Temple, Texas, pp. 340-367.
  18. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., and Hauck, L.M. (2001). "Validation of the swat model on a large rwer basin with point and nonpoint sources 1." Journal of the American Water Resources Association, JAWRA, Vol. 37, No. 5, pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  19. Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., Dankers, R., Eisner, S., Fekete, B. M., Colon- Gonzalez, F.J., Gosling, S.N., Kim, H., Liu, X., Masaki, Y., Portmann, F.T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., and Kabat, P. (2014). "Multi model assessment of water scarcity under climate change." Proceedings of the National Academy of Sciences, National Academy of Sciences, Vol. 111, No. 9, pp. 3245-3250.
  20. Wang, Y., Zhang, W., Zhao, Y., Peng, H., and Shi, Y. (2016). "Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River." Journal of hydrology, Elsevier BV, Vol. 541, pp. 1348-1362. https://doi.org/10.1016/j.jhydrol.2016.08.039
  21. White, K.L. and Chaubey, I. (2005). "Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model." Journal of the American Water Resources Association, AWRA, Vol. 41, No. 5, pp. 1077-1089. https://doi.org/10.1111/j.1752-1688.2005.tb03786.x
  22. Zeng, Q., Qin, L., and Li, X. (2015). "The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system." Science of the Total Environment, Elsevier BV, Vol. 536, pp. 675-686. https://doi.org/10.1016/j.scitotenv.2015.07.042