DOI QR코드

DOI QR Code

Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus

  • Jeong, Soyeon (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University) ;
  • Ahn, Jinsook (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University) ;
  • Kwon, Ae-Ran (Department of Beauty Care, College of Medical Science, Daegu Haany University) ;
  • Ha, Nam-Chul (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University)
  • Received : 2020.03.23
  • Accepted : 2020.06.28
  • Published : 2020.08.31

Abstract

HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.

Keywords

References

  1. Baytshtok, V., Fei, X., Grant, R.A., Baker, T.A., and Sauer, R.T. (2016). A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Structure 24, 1766-1777. https://doi.org/10.1016/j.str.2016.08.012
  2. Bochtler, M., Ditzel, L., Groll, M., and Huber, R. (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 94, 6070-6074. https://doi.org/10.1073/pnas.94.12.6070
  3. Bochtler, M., Hartmann, C., Song, H.K., Bourenkov, G.P., Bartunik, H.D., and Huber, R. (2000). The structures of HsIU and the ATP-dependent protease HslU-HslV. Nature 403, 800-805. https://doi.org/10.1038/35001629
  4. Cabrita, L.D., Dai, W., and Bottomley, S.P. (2006). A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnol. 6, 12. https://doi.org/10.1186/1472-6750-6-12
  5. Chuang, S.E., Burland, V., Plunkett, G., 3rd, Daniels, D.L., and Blattner, F.R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1-6. https://doi.org/10.1016/0378-1119(93)90167-2
  6. Culp, E. and Wright, G.D. (2017). Bacterial proteases, untapped antimicrobial drug targets. J. Antibiot. (Tokyo) 70, 366-377. https://doi.org/10.1038/ja.2016.138
  7. Dong, S.L., Hu, W.L., Ge, Y.M., Ojcius, D.M., Lin, X., and Yan, J. (2017). A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg. Microbes Infect. 6, e105. https://doi.org/10.1038/emi.2017.93
  8. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471. https://doi.org/10.1038/386463a0
  9. Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T. (2001). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9, 486-493. https://doi.org/10.1016/S0966-842X(01)02175-8
  10. Hong, S., Son, B., Ryu, S., and Ha, N.C. (2019). Crystal structure of LysB4, an endolysin from Bacillus cereus-targeting bacteriophage B4. Mol. Cells 42, 79-86. https://doi.org/10.14348/molcells.2018.0379
  11. Huber, E.M., Heinemeyer, W., Li, X., Arendt, C.S., Hochstrasser, M., and Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat. Commun. 7, 10900. https://doi.org/10.1038/ncomms10900
  12. Jeong, S., Ha, N.C., and Kwon, A.R. (2018). Purification and preliminary analysis of the ATP-dependent unfoldase HslU from the gram-positive bacterium Staphylococcus aureus. Biodesign 6, 96-99.
  13. Kanemori, M., Yanagi, H., and Yura, T. (1999). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J. Bacteriol. 181, 3674-3680. https://doi.org/10.1128/JB.181.12.3674-3680.1999
  14. Kang, M.S., Lim, B.K., Seong, I.S., Seol, J.H., Tanahashi, N., Tanaka, K., and Chung, C.H. (2001). The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. EMBO J. 20, 734-742. https://doi.org/10.1093/emboj/20.4.734
  15. Kim, S., Kim, S.H., Ahn, J., Jo, I., Lee, Z.W., Choi, S.H., and Ha, N. (2019). Crystal structure of the regulatory domain of MexT, a transcriptional activator of the MexEFOprN efflux pump in Pseudomonas aeruginosa. Mol. Cells 42, 850-857. https://doi.org/10.14348/molcells.2019.0168
  16. Kwon, A.R., Kessler, B.M., Overkleeft, H.S., and McKay, D.B. (2003). Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J. Mol. Biol. 330, 185-195. https://doi.org/10.1016/S0022-2836(03)00580-1
  17. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861-877. https://doi.org/10.1107/S2059798319011471
  18. Notredame, C., Higgins, D.G., and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217. https://doi.org/10.1006/jmbi.2000.4042
  19. Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  20. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  21. Rho, S.H., Park, H.H., Kang, G.B., Im, Y.J., Kang, M.S., Lim, B.K., Seong, I.S., Seol, J., Chung, C.H., Wang, J., et al. (2008). Crystal structure of Bacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus. Proteins 71, 1020-1026. https://doi.org/10.1002/prot.21758
  22. Rohrwild, M., Coux, O., Huang, H.C., Moerschell, R.P., Yoo, S.J., Seol, J.H., Chung, C.H., and Goldberg, A.L. (1996). HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U. S. A. 93, 5808-5813. https://doi.org/10.1073/pnas.93.12.5808
  23. Rousseau, A. and Bertolotti, A. (2018). Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19, 697-712. https://doi.org/10.1038/s41580-018-0040-z
  24. Schrodinger (2010). The PyMOL Molecular Graphics System, version 1.3r1 (New York: Schrodinger).
  25. Seemuller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995). Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268, 579-582. https://doi.org/10.1126/science.7725107
  26. Sousa, M.C., Trame, C.B., Tsuruta, H., Wilbanks, S.M., Reddy, V.S., and McKay, D.B. (2000). Crystal and solution structures of an HslUV proteasechaperone complex. Cell 103, 633-643. https://doi.org/10.1016/S0092-8674(00)00166-5
  27. Thomson, S. and Rivett, A.J. (1996). Processing of N3, a mammalian proteasome beta-type subunit. Biochem. J. 315 (Pt 3), 733-738. https://doi.org/10.1042/bj3150733
  28. Wang, J., Rho, S.H., Park, H.H., and Eom, S.H. (2005). Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects. Acta Crystallogr. D Biol. Crystallogr. 61, 932-941. https://doi.org/10.1107/S0907444905009546
  29. Wang, J., Song, J.J., Franklin, M.C., Kamtekar, S., Im, Y.J., Rho, S.H., Seong, I.S., Lee, C.S., Chung, C.H., and Eom, S.H. (2001). Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177-184. https://doi.org/10.1016/S0969-2126(01)00570-6
  30. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/S0907444910045749
  31. Yoo, S.J., Shim, Y.K., Seong, I.S., Seol, J.H., Kang, M.S., and Chung, C.H. (1997). Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett. 412, 57-60. https://doi.org/10.1016/S0014-5793(97)00742-4
  32. Yoo, S.J., Shim, Y.K., Seong, I.S., Seol, J.H., Kang, M.S., and Chung, C.H. (1997). Mutagenesis of two N-terminal Thr and five Ser residues in HslV, the proteolytic component of the ATP-dependent HslVU protease. FEBS Lett. 412, 57-60. https://doi.org/10.1016/S0014-5793(97)00742-4

Cited by

  1. Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain vol.44, pp.3, 2020, https://doi.org/10.14348/molcells.2021.2235