DOI QR코드

DOI QR Code

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery

Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구

  • Jung, Minyoung (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Kang, Wonbin (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Song, Ahram (Dept. of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Yongil (Dept. of Civil and Environmental Engineering, Seoul National University)
  • Received : 2020.07.20
  • Accepted : 2020.08.24
  • Published : 2020.08.31

Abstract

This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

본 연구는 효율적인 재난 피해 분석을 위해 재난 후 KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R 영상의 기하품질을 향상하는 방법을 제안한다. 제안 기법은 재난상황에 대한 데이터 수급의 한계를 해결하고자, 영상 수급이 원활한 Planetscope 정사영상과 KOMPSAT-3/3A 영상에 격자기반 SIFT (Scale Invariant Feature Transform) 기법을 적용하여 RPC (Rational Polynomial Coefficient) 보정에 필요한 GCP (Ground Control Point, 지상기준점)를 취득한다. 제안 기법을 검증하기 위해 2019년 4월 강릉 산불 피해 지역의 KOMPSAT-3 영상과 토지피복의 다양성을 고려하여 추가된 대전지역 KOMPSAT-3A 영상에 제안 기법을 적용하였다. 생성된 KOMPSAT-3/3A 정사영상의 기하품질을 검증한 결과, KOMPSAT-3 다중분광 영상의 위치오차 (RMSE: Root Mean Square Error)가 6.62화소에서 1.25화소로, KOMPSAT-3A의 경우 7.03화소에서 1.66화소로 감소되어 영상의 기하품질이 향상됨을 확인하였다. 기하품질이 향상된 KOMPSAT-3 정사영상은 산불 발생 전 Planetscope 정사영상과 비교되었으며, 이를 통해 향상된 기하품질이 산불 피해 지역 분석에 적합하다고 판단하였다. 본 연구는 GCP 취득의 대안으로 Planetscope 정사영상의 사용 가능성을 보여주었으며, 제안 기법은 재난 상황뿐만 아니라 Planetscope 영상의 수급이 가능한 다양한 KOMPSAT-3/3A 활용연구에 적용될 수 있을 것으로 예상된다.

Keywords

Acknowledgement

본 연구는 행정안전부 재난안전 산업육성지원 사업(no.20009742)과 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2019R1I1A2A01058144)의 지원을 받았습니다. Planetscope 영상은 Planet's Education and Research 프로그램의 일환으로 Planet Labs, Inc.에서 제공하였습니다.

References

  1. Ahn, K., Lee, H., Seo, D., Park, B.-W., and Jeong, D. (2014), The use of the Unified Control Points for RPC adjustment of KOMPSAT-3 satellite image, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 5, pp. 539-550. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.5.539
  2. Choi, S. and Kang, J. (2012), Accuracy investigation of RPC-based block adjustment using high resolution satellite images GeoEye-1 and WorldView-2, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 30, No. 2, pp. 107-116. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.2.107
  3. Fischler, M.A. and Bolles, R.C. (1981), Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, Vol. 24, No. 6, pp. 381-395. https://doi.org/10.1145/358669.358692
  4. Fraser, C.S. and Hanley, H.B. (2005), Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 8, pp. 909-915. https://doi.org/10.14358/PERS.71.8.909
  5. Ghuffar, S. (2018), DEM generation from multi satellite PlanetScope imagery, Remote Sensing, Vol. 10, No. 9, p.1462. https://doi.org/10.3390/rs10091462
  6. Grodecki, J. and Dial, G. (2003), Block adjustment of high-resolution satellite images described by rational polynomials, Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 1, pp. 59-68. https://doi.org/10.14358/PERS.69.1.59
  7. Han, Y. (2013), Automatic image-to-image registration between high-resolution multisensor satellite data in urban areas, Ph.D. dissertation, Seoul National University, Seoul, Korea. 148p. (in Korean with English abstract)
  8. Huo, C., Pan, C., Huo, L., and Zhou, Z. (2012), Multilevel SIFT matching for large-size VHR image registration, IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 2, pp. 171-175. https://doi.org/10.1109/LGRS.2011.2163491
  9. Kim, G.H., Sohn, H.G., Lee, J.O., and Lee, J.M. (2004), Surveying and Geo-Spatial Information Engineering : GCP Data Acquisition Using Image Chip Database, Journal of the Korean Society of Civil Engineers, Vol. 24, No. 6D, pp. 985-990. (in Korean with English abstract)
  10. Kim, M., Jung, M., and Kim, Y. (2019), Histogram matching of Sentinel-2 spectral information to enhance Planetscope imagery for effective wildfire damage assessment, Korean Journal of Remote Sensing, Vol. 35, No. 4, pp. 517-534. https://doi.org/10.7780/kjrs.2019.35.4.3
  11. Lee, H., Seo, D., Ahn, K., and Jeong, D. (2013), Positioning accuracy analysis of KOMPSAT-3 satellite imagery by RPC adjustment, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 6-1, pp. 503-509. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.6-1.503
  12. Lee, K., Kim, E., and Kim, Y. (2017). Orthorectification of KOMPSAT optical images using various ground reference data and accuracy assessment, Journal of Sensors, Vol. 2017, pp. 1-14.
  13. Lee, K.D. and Yoon, J.S. (2019), GCP chip automatic extraction of satellite imagery using interest point in North Korea, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 37, No. 4, pp. 211-218. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2019.37.4.211
  14. Li, P., Xu, H., and Guo, J. (2010), Urban building damage detection from very high resolution imagery using OCSVM and spatial features, International Journal of Remote Sensing, Vol. 31, No. 13, pp. 3393-3409. https://doi.org/10.1080/01431161003727705
  15. Lim, Y.J., Kim, M.G., Kim, T., and Cho, S.I. (2004), Automatic precision correction of satellite images using the GCP chips of lower resolution, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 20-24 September, Anchorage, AK, US, Vol. 2, pp. 1394-1397.
  16. Ling, X., Huang, X., Zhang, Y., and Zhou, G. (2020), Matching confidence constrained bundle adjustment for multi-view high-resolution satellite images, Remote Sensing, Vol. 12, No. 1, p. 20. https://doi.org/10.3390/rs12010020
  17. Lowe, D. (2004), Distinctive image features from scaleinvariant keypoints, International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  18. Oh, J. and Lee, C. (2015), Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 100, pp. 14-22. https://doi.org/10.1016/j.isprsjprs.2014.02.009
  19. Park, S.H., Jung, H.S., Lee, M.J., Lee, W.J., and Choi, M.J. (2019), Oil spill detection from PlanetScope satellite image: application to Oil spill Accident near Ras Al Zour area, Kuwait in august 2017, Journal of Coastal Research, Vol. 90, No. SI, pp. 251-260. https://doi.org/10.2112/SI90-031.1
  20. Pehani, P., Cotar, K., Marsetic, A., Zaletelj, J., and Ostir, K. (2016), Automatic geometric processing for very high resolution optical satellite data based on vector roads and orthophotos, Remote Sensing, Vol. 8, No. 4, p. 343. https://doi.org/10.3390/rs8040343
  21. Planet. (2020), Planet imagery product specifications, planet.com, https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (last date accessed: 18 July 2020).
  22. Saito, K., Spence, R. J., Going, C., and Markus, M. (2004), Using high-resolution satellite images for post-earthquake building damage assessment: a study following the 26 January 2001 Gujarat earthquake, Earthquake spectra, Vol. 20, No. 1, pp. 145-169. https://doi.org/10.1193/1.1650865
  23. Shin, J. K., Lee, Y. J., Kim, G. J., and Lee, J. H. (2015), Assessment of possibility of adopting the error tolerance of geometric correction on producing 1/5,000 Digital Topographic Map for inaccessible area using the PLEIADES images and TerraSAR control point, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 2, pp. 83-94. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.2.83
  24. SI Imaging Services (2019a), KOMPSAT-3 Image Data Manual v2.1, SI Imaging Services, Korea, http://www.siimaging.com/resources/?pageid=2&uid=336&mod=document (last date accessed: 13 October 2019).
  25. SI Imaging Services (2019b), KOMPSAT-3A Image Data Manual v1.5, SI Imaging Services, Korea, http://www.siimaging.com/resources/?pageid=2&uid=337&mod=document (last date accessed: 13 October 2019).
  26. Tong, X., Hong, Z., Liu, S., Zhang, X., Xie, H., Li, Z., Yang, S., Wang, W., and Bao, F. (2012), Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 68, pp. 13-27. https://doi.org/10.1016/j.isprsjprs.2011.12.004
  27. Wang, T., Zhang, G., Li, D., Tang, X., Jiang, Y., Pan, H., and Zhu, X. (2014), Planar block adjustment and orthorectification of ZY-3 satellite images, Photogrammetric Engineering & Remote Sensing, Vol. 80, No. 5, pp. 559-570. https://doi.org/10.14358/PERS.80.6.559-570
  28. Wicaksono, P. and Lazuardi, W. (2018), Assessment of PS images for benthic habitat and seagrass speciesmapping in a complex optically shallow water environment, International Journal of Remote Sensing, Vol. 39, No. 17, pp. 5739-5765. https://doi.org/10.1080/01431161.2018.1506951
  29. Ye, Y. and Shan, J. (2014), A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 90, pp. 83-95. https://doi.org/10.1016/j.isprsjprs.2014.01.009
  30. Yeom, J., Jung, M., and Kim, Y. (2017), Detecting damaged building parts in earthquake-damaged areas using differential seeded region growing, International Journal of Remote Sensing, Vol. 38, No. 4, pp. 985-1005. https://doi.org/10.1080/01431161.2016.1274445
  31. Yi, Z., Zhiguo, C., and Yang, X. (2008), Multi-spectral remote image registration based on SIFT, Electronics Letters, Vol. 44, No. 2, pp. 107-108. https://doi.org/10.1049/el:20082477
  32. Yoon, W.S. (2019), A Study on Development of Automatic GCP Matching Technology for CAS-500 Imagery, Master's thesis, Inha University, Incheon, Korea, 57p. (in Korean with English abstract)

Cited by

  1. KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석 vol.37, pp.2, 2020, https://doi.org/10.7780/kjrs.2021.37.2.4