DOI QR코드

DOI QR Code

Correlation of Reflection Coefficient and Extracted Efficiency of an Oscillating Water Column Device in Front of a Seawall

안벽 앞에 설치된 진동수주형 파력발전장치의 반사율과 추출효율과의 상관관계

  • Cho, Il Hyoung (Department of Ocean System Engineering, Jeju National University) ;
  • Kim, Jeongrok (Department of Ocean System Engineering, Jeju National University)
  • 조일형 (제주대학교 해양시스템공학과) ;
  • 김정록 (제주대학교 해양시스템공학과)
  • Received : 2020.07.18
  • Accepted : 2020.08.18
  • Published : 2020.08.31

Abstract

In this study, the extraction efficiency and reflection coefficient by a two-dimensional OWC (Oscillating Water Column) WEC (wave energy converter) installed in front of a seawall was investigated for regular/irregular waves. The matched eigenfunction expansion method (MEEM) based on the linear potential theory was applied as an analytical tool. The diffraction problem by the incident wave in the open-chamber and the radiation problem by the oscillating pressure in the closed-chamber were solved to obtain the volume fluxes at the internal free-surface. Applying the volume fluxes into the continuity equation for the airflow in a chamber, we got the oscillating air pressure. The maximum extracted power and corresponding reflection coefficient were determined at the optimal turbine coefficient that maximizes the extracted power. OWC device designed for a high extracted efficiency simultaneously contributes to reduce reflected waves.

본 연구에서는 직립 안벽 앞에 설치된 2차원 진동수주형 파력발전장치의 추출효율과 반사율을 규칙파와 불규칙파에 대하여 살펴보고 둘 사이의 상관관계를 조사하였다. 해석이론으로 선형포텐셜 이론에 기반을 둔 고유함수전개법을 사용하였다. 공기실이 완전 개방되었을 때 입사파에 의한 산란문제와 공기실이 닫혀 있을 때 공기실내의 변동압력에 의한 파의 방사문제를 풀어 공기실 내부의 유량을 구하고, 이를 공기실내의 공기 흐름에 대한 연속방정식에 대입하여 변동압력을 구한다. 추출파워가 최대가 되는 최적 터빈계수를 적용하여 진동수주형 파력발전장치의 최대 추출효율과 반사율을 규칙파와 불규칙파에 대하여 구하였다. 파랑에너지를 효율적으로 흡수하도록 설계된 진동수주형 파력발전장치는 동시에 반사파를 줄이는데 기여하였다.

Keywords

References

  1. Bouws, E., Gunther, H., Rosenthal, W. and Vincent, C.L. (1985). Similarity of the wind wave spectrum in finite depth water, Part II - quasi-equilibrium relations. J. Geophysical Research, 90, 975-986. https://doi.org/10.1029/JC090iC01p00975
  2. Clement, A.H. (1997). Dynamic nonlinear response of OWC wave energy devices. Int. J. Offshore Polar Eng., 72, 154-159.
  3. Evans, D.V. (1978). The oscillating water column wave energy device. J. Inst. Math. Appl., 22, 423-433. https://doi.org/10.1093/imamat/22.4.423
  4. Evans, D.V. (1982). Wave-power absorption by systems of oscillating surface pressure distributions. J. Fluid Mech., 114, 481-499. https://doi.org/10.1017/S0022112082000263
  5. Evans, D.V. and Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Appl. Ocean Res., 17, 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  6. Evans, D.V. and Porter, R. (1997). Efficient calculating of hydrodynamic properties of owc-type devices. J. Offshore Mechanics and Arctic Engineering, 119, 210-218. https://doi.org/10.1115/1.2829098
  7. Hong, K., Shin, S.-H. and Hong, D.C. (2007). Wave energy absorption efficiency of pneumatic chamber of OWC wave energy converter. J. Offshore Marine Environ. Eng., 10(3), 173-180.
  8. Koo, W. and Kim, M.H. (2010). Nonlinear time-domain simulation of a land-based oscillating water column. J. Water Port Coast., 136, 276-285. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000051
  9. Luo, Y., Nader, J.R., Cooper, P. and Zhu, S.P. (2014). Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters. Renew. Energy, 64, 255-265. https://doi.org/10.1016/j.renene.2013.11.007
  10. Ning, D.Z., Shi, J., Zou, Q.P. and Teng, B. (2015). Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method). Energy, 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012
  11. Sarmento, A.J.N.A. and Falcao, A.F.DE O. (1985). Wave generation by an oscillating surface-pressure and its application in waveenergy extraction. J. Fluid Mech., 150, 467-485. https://doi.org/10.1017/S0022112085000234
  12. Hirt, C.W. and Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  13. Marjani, A.E.I., Ruiz, F.C., Rodriguez, M.A. and Parra, M.T. (2008). Numerical modelling in wave energy conversion systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  14. Conde, J.M.P. and Gato, L.M.C. (2008). Numerical study of the airflow in an oscillating water column wave energy converter. Renew Energy 33, 2637-2644. https://doi.org/10.1016/j.renene.2008.02.028