DOI QR코드

DOI QR Code

Prediction of Wave Breaking Using Machine Learning Open Source Platform

머신러닝 오픈소스 플랫폼을 활용한 쇄파 예측

  • Lee, Kwang-Ho (Dept. of Civil Engineering, Catholic Kwandong University) ;
  • Kim, Tag-Gyeom (Dept. of Energy and Environmental Eng., Graduate School, Catholic Kwandong University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 토목공학과) ;
  • 김탁겸 (가톨릭관동대학교 대학원 에너지환경융합학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Received : 2020.08.11
  • Accepted : 2020.08.20
  • Published : 2020.08.31

Abstract

A large number of studies on wave breaking have been carried out, and many experimental data have been documented. Moreover, on the basis of various experimental data set, many empirical or semi-empirical formulas based primarily on regression analysis have been proposed to quantitatively estimate wave breaking for engineering applications. However, wave breaking has an inherent variability, which imply that a linear statistical approach such as linear regression analysis might be inadequate. This study presents an alternative nonlinear method using an neural network, one of the machine learning methods, to estimate breaking wave height and breaking depth. The neural network is modeled using Tensorflow, a machine learning open source platform distributed by Google. The neural network is trained by randomly selecting the collected experimental data, and the trained neural network is evaluated using data not used for learning process. The results for wave breaking height and depth predicted by fully trained neural network are more accurate than those obtained by existing empirical formulas. These results show that neural network is an useful tool for the prediction of wave breaking.

지금까지 연안에서 발생하는 쇄파에 대한 연구는 지속적으로 수행되었으며, 그에 따른 많은 실험자료가 축적되어 왔다. 또한, 다양한 실험자료로부터 공학적인 적용을 위한 쇄파 정보를 정량적으로 예측하기 위하여 회귀분석에 기반한 다양한 경험식이 제안되었다. 그러나 쇄파는 내재하고 있는 변동성이 있으므로 선형 회귀분석과 같은 선형적 통계접근 방법에는 한계가 있다. 본 연구에서는 쇄파파고 및 쇄파수심을 예측하기 위하여 기계학습 중 하나인 신경망을 사용하는 비선형 방법을 제안하였다. 신경망은 구글에서 배포하고 있는 머신러닝 오픈소스 플랫폼인 텐서플로(Tensorflow)를 이용하여 구축하였다. 신경망 모델은 수집된 실험자료를 무작위로 선택하여 학습하였으며, 학습에 이용하지 않은 자료를 사용하여 학습된 신경망을 평가하였다. 학습된 신경망에 의해 예측된 쇄파파고와 쇄파수심에 대한 예측결과는 기존의 경험식에 의한 계산결과에 비해 높은 예측성능을 보였으며, 이는 충분히 학습된 신경망은 쇄파파고 및 수심을 예측하기 위한 유용한 도구로 사용될 수 있음을 보여준다.

Keywords

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2015). Large-scale machine learning on heterogeneous distributed systems. Preliminary White Paper, Google Research.
  2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016). Tensorflow:Large-scale machine learning on heterogeneous distributed systems. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association.
  3. Deo, M.C. and Jagdale, S.S. (2003). Prediction of breaking waves with neural networks. Ocean Engineering, 30, 1163-1178. https://doi.org/10.1016/S0029-8018(02)00086-0
  4. Goda, Y. (1970). A synthesis of breaker indices. Transactions of the Japan Society of Civil Engineers, 2(2), 39-40 (in Japanese).
  5. Goda, Y. (1973). A new method of wave pressure calculation for the design of composite breakwaters. Report of the Port and Harbour Research Institute, 14(3), 59-106 (in Japanese).
  6. Goda, Y. (2010). Reanalysis of regular and random breaking wave statistics. Coastal Engineering Journal, 52(1), 71-106. https://doi.org/10.1142/S0578563410002129
  7. Hinton, G.E., Osindero, S. and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
  8. Kim, D.H., Kim, Y.J., Hur, D.S., Jeon, H.S. and Lee, C. (2010). Calculating expected damage of breakwater using artificial neural network for wave height calculation. Journal of Korean Society of Coastal and Ocean Engineers, 22(2), 126-132 (in Korean).
  9. Kim, D.H. and Park, W.S. (2005). Neural network for design and reliability analysis of rubble mound breakwaters. Ocean Engineering, 32, 1332-1349. https://doi.org/10.1016/j.oceaneng.2004.11.008
  10. Kim, S.W. and Suh, K.D. (2011). Prediction of stability number for tetrapod armour block using artificial neural network and M5' model tree. Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 109-117 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.1.109
  11. Komar, P.D. and Gaughan, M.K. (1972). Airy wave theory and breaker height prediction. Proceedings of 13th Conference on Coastal Engineering, Vancouver, Canada, 405-418.
  12. Lara, J.L., Losada, I.J. and Liu, P.L.F. (2006). Breaking waves over mild gravel slope: Experimental and numerical analysis. Journal of Geophysical Research, 111, 1-26.
  13. Le Mehaute, B. and Koh, R.C.Y. (1967). On the breaking of waves arriving at an angle to shore. Journal of Hydraulic Research, 5, 67-88. https://doi.org/10.1080/00221686709500189
  14. Le Roux, J.P. (2007). A simple method to determine breaking height and depth for different wave height/length ratios and floor slope. Coastal Engineering, 54, 271-277. https://doi.org/10.1016/j.coastaleng.2006.10.001
  15. Liu, Y., Niu, X. and Yu, X. (2011). A new predictive formula for inception of regular wave breaking. Coastal Engineering, 58, 877-889. https://doi.org/10.1016/j.coastaleng.2011.05.004
  16. Miche, R. (1944). Mouvements ondulatoires de la mer en profondeur constante ou decroissante. Annles de Ponts et Chaussees, 19, 370-406 (in French).
  17. Michell, J.H. (1893). On the highest wave in water. Philosophical Magazine, Edinburgh, Series 5(36), 430-435. https://doi.org/10.1080/14786449308620499
  18. Nakamura, M., Shiraishi, H. and Sasaki, Y. (1966). Study on wave breaking. Proceedings of 13th Japanese Conference on Coastal Engineering, JSCE, 71-75 (in Japanese).
  19. Ostendorf, D.W. and Madsen, O.S. (1979). An analysis of longshore current and associated sediment transport in the surf zone. Report No. 241, Department of Civil Engineering, MIT, 1165-1178.
  20. Sunamura, T. and Horikawa, K. (1974). Two-demensional beach transformation due to waves. Proceedings of 13th Conference on Coastal Engineering, Copenhagen, Denmark, 920-938.
  21. Rattanapitikon, W. and Shibayama, T. (2000). Verification and modification of breaker height formulas. Coastal Engineering Journal, 42(4), 389-406. https://doi.org/10.1142/S0578563400000195
  22. Rattanapitikon, W. and Shibayama, T. (2006). Braking wave formulas for breaking depth and orbital to phase velocity ratio. Coastal Engineering Journal, 48(4), 395-416. https://doi.org/10.1142/S0578563406001489
  23. Rattanapitikon, W., Vivattanasirisak, T. and Shibayama, T. (2003). A proposal of new breaking height formula. Coastal Engineering Journal, 45(1), 28-48.
  24. Smith, E.R. and Kraus, N.C. (1990). Laboratory study on macrofeatures of wave breaking over bars and artificial reefs. U.S. Army Corps of Engineers Technical Report CREC-90-12, WES, 232p.
  25. Tieleman, T. and Hinton, G.E. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, In Coursera: Neural Networks for Machine Learning.
  26. Xie, W., Shibayama, T. and Esteban, M. (2019). A semi-empirical formula for calculating the breaking depth of plunging waves. Coastal Engineering Journal, 61(2), 199-209. https://doi.org/10.1080/21664250.2019.1579459
  27. Yagci, O., Mercan, D.E., Gigizoglu, H.K. and Kabdasli, M.S. (2005). Artificial intelligence methods in breakwater damage ratio estimation. Ocean Engineering, 32, 2088-2106. https://doi.org/10.1016/j.oceaneng.2005.03.004
  28. Yi, J.K., Ryu, K.H., Baek, W.D. and Jeong, W.M. (2017). Wave height and downtime event forecasting in harbour with complex topography using auto-regressive and artificial neural networks models. Journal of Korean Society of Coastal and Ocean Engineers, 29(4), 180-188 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.4.180