DOI QR코드

DOI QR Code

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV)

대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가

  • Park, Joo-Shin (Ship and Offshore Research Institute, Samsung Heavy Industries Co., Ltd) ;
  • Ma, Kuk-Yeol (Department of Naval Architecture and Ocean Engineering, Pusan National University Busan) ;
  • Seo, Jung-Kwan (Department of Naval Architecture and Ocean Engineering, Pusan National University Busan)
  • 박주신 (삼성중공업 조선해양연구소) ;
  • 마국열 (부산대학교 조선해양공학과) ;
  • 서정관 (부산대학교 조선해양공학과)
  • Received : 2020.06.01
  • Accepted : 2020.08.28
  • Published : 2020.08.31

Abstract

Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

최근 해상풍력발전기 시장은 에너지 수요 증가, 화석 연료 기반 발전에 대한 의존도 감소와 환경 규제로 인해 향후 5년 내에 빠른 성장이 예상된다. 이러한 상황에 따라서 전 세계적으로 풍력 발전을 가속화하고 있으며, 해상풍력으로 진입하려는 시도가 많아지고 있다. 노르웨이 해상 안전 관리처(PSA: Petroleum Safety Authority)는 운영하는 동안 충돌사고에 대한 충돌에너지가 35 MJ을 견딜 수 있는 안전설계 기준을 요구하고 있다. 따라서 본 연구에서는 북해 해상풍력발전기 설치 단지에 투입되는 해상풍력발전기 설치 선박(WTIV)의 레그 (Leg)와 선박충돌 사고에 대하여 발생 가능한 충돌시나리오에 대해서 비선형 소성붕괴 거동 결과를 바탕으로 레그의 충돌강도평가법을 분석하였다. 분석된 결과로 현재 설계된 기존 선박을 기준으로 요구치인 35 MJ을 만족을 위해서는 200 % 이상의 단면계수 증가가 필요하고, 이는 현실적인 레그 설계에서는 불가능한 조건으로 판단됐다. 또한, 합리적인 충돌시나리오를 기반으로 한 충돌에너지 기준의 제정이 필요하다.

Keywords

References

  1. AMR(2017), Allied Market Research, Wind Turbine Market by Type of Wind Farm (onshore and offshore) and Application (industrial, commercial and residential), Global Opportunity Analysis and Industry Forecast, pp. 15-40.
  2. ANSYS Multiphysics User's manual(2016), Introduction of nonlinear analysis and it's application of plate buckling and ultimate strength, Vol. 3, pp. 85-110.
  3. Bela, A., H. Sourne, L. Buldgen, and P. Rigo(2017), Ship collision analysis on offshore wind turbine monopile foundations, Marine Structures 51, pp. 220-241. https://doi.org/10.1016/j.marstruc.2016.10.009
  4. DNV-GL(2018), World Offshore Accident Database (WORD), Offshore accident data for oil and gas facilities, DNV-GL, Oslo.
  5. DNV-GL OSS-201(2013), Offshore Service Specification DNV-GL OSS-201, 2.2 Additional Technical Requirements Stipulated by PSA. Det Norske Veritas, Oslo.
  6. Hao, E. and C. Liu(2017), Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: Monopile, tripod, and jacket, Ocean Engineering, Vol. 130, pp. 218-227. https://doi.org/10.1016/j.oceaneng.2016.12.008
  7. Kim, S. J., J. K. Seo, K. Y. Ma, and J. S. Park(2020), Methodology for collision-frequency analysis of wind-turbine installation vessels, Ships and Offshore Structures, DOI: 10.1080/17445302.2020.1735835.
  8. Koogle, T.(2015), Modern Jack-ups and their Dynamic Behaviour, Investigating the trends and limits of moving into deeper waters, Master of Science in offshore Engineering at Delft University of Technology, pp. 7-22.
  9. Moulas, D., M. Shafiee, and A. Mehmanparast(2017), Damage analysis of ship collisions with offshore wind turbine foundations, Ocean Engineering, Vol. 143, pp. 149-162. https://doi.org/10.1016/j.oceaneng.2017.04.050
  10. MSC Nastran User's manual(2012), Introduction of linear and nonlinear analysis and it's application of shell modeling Vol. 2, pp. 50-65.
  11. NORSOK STANDARD(2004), Design of steel structures N-004, Rev. 2, pp. 86-97.
  12. Poonaya, S., Y. Teeboonma, and C. Thinvongpituk(2009), Plastic collapse analysis of thin-walled circular tubes subjected to bending, Journal of Thin-Walled Structure 47, pp. 637-645. https://doi.org/10.1016/j.tws.2008.11.005
  13. Storheim, M. and J. Amdahl(2014), Design of offshore structures against accidental ship collisions, Marine Structures, Vol. 37, pp. 135-172. https://doi.org/10.1016/j.marstruc.2014.03.002
  14. Yu, Z. and J. Amdahl(2018), Analysis and design of offshore tubular members against ship impacts. Marine Structures. 58, pp. 109-135. https://doi.org/10.1016/j.marstruc.2017.11.004