DOI QR코드

DOI QR Code

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M. (Nanotechnology Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk) ;
  • Tekin, H.O. (Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah) ;
  • Zakaly, Hesham MH. (Institute of Physics and Technology, Ural Federal University) ;
  • Pyshkina, Mariia (Institute of Physics and Technology, Ural Federal University) ;
  • Issa, Shams A.M. (Nanotechnology Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk) ;
  • Susoy, G. (Istanbul University, Faculty of Science, Department of Physics)
  • Received : 2019.12.06
  • Accepted : 2020.02.14
  • Published : 2020.09.25

Abstract

Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

Keywords

References

  1. L.A. Ma, Z.X. Lin, J.Y. Lin, Y.A. Zhang, L.Q. Hu, T.L. Guo, Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties, Physica E 41 (8) (2009) 1500-1503, https://doi.org/10.1016/j.physe.2009.04.028.
  2. Vipin Kumar, M.K. Sharma, J. Gaur, T.P. Sharma, Polycrystalline ZnS thin films by screen printing method and its characterization, Chalcogenide Lett. 5 (November 2008) 289-295.
  3. A.M.E. Raj, V.B. Jothy, C. Ravidhas, T. Som, M. Jayachandran, C. Sanjeeviraja, Effect of embedded lithium nanoclusters on structural, optical and electrical characteristics of MgO thin films, Radiat. Phys. Chem. 78 (2009) 914-921. https://doi.org/10.1016/j.radphyschem.2009.06.034
  4. A. Kumar, J. Kumar, On the synthesis and optical absorption studies of nanosize magnesium oxide powder, J. Phys. Chem. Solid. 69 (2008) 2764-2772. https://doi.org/10.1016/j.jpcs.2008.06.143
  5. T. Selvamani, T. Yagyu, S. Kawasaki, I. Mukhopadhyay, Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity, J. Catal. Commun. 11 (2010) 537-541, https://doi.org/10.1016/j.catcom.2009.12.014.
  6. J. Jiu, K.I. Kurumada, M. Tanigaki, Preparation of nanoporous silica using copolymer template, Mater. Chem. Phys. 78 (2002) 177-183, https://doi.org/10.1016/S0254-0584(02)00340-1.
  7. A.V. Chadwick, I.J.F. Poplett, D.T.S. Maitland, M. E Smith, Oxygen speciation in nanophase MgO from solid-state 17O NMR, Chem. Mater. 10 (1998) 864-870, https://doi.org/10.1021/cm970629+.
  8. X. Bokhimi, A. Morales, M. Portilla, A. Garcia-Ruiz, Hydroxides as precursors of nanocrystalline oxides, Nanostruct. Mater. 12 (1999) 589-592. https://doi.org/10.1016/S0965-9773(99)00190-7
  9. A. Subramania, G.V. Kumar, A.R. Priya, T. Vasudevan, Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires, Nanotechnology 18 (2007) 1-5, https://doi.org/10.1088/0957-4484/18/22/225601.
  10. A. Khorsand Zak, R. Razali, WH Abd Majid, Majid Darroudi, Int. J. Nanomed. 6 (2011) 1399-1403. https://doi.org/10.2147/IJN.S19693
  11. Asghar Mesbahi, Hosein Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations, Appl. Radiat. Isot. 136 (2018) 27-31, https://doi.org/10.1016/j.apradiso.2018.02.004.
  12. Khatibeh Verdipoor, Abdolali Alemi, Asghar Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding, Radiat. Phys. Chem. 147 (2018) 85-90, https://doi.org/10.1016/j.radphyschem.2018.02.017.
  13. H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code, Appl. Radiat. Isot. 121 (2017) 122-125, https://doi.org/10.1016/j.apradiso.2016.12.040.
  14. H.O. Tekin, M.I. Sayyed, Shams A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code, Radiat. Phys. Chem. 150 (2018) 95-100, https://doi.org/10.1016/j.radphyschem.2018.05.002.
  15. Jun-Hua Liu, Quan-Ping Zhang, Nan Sun, Yang Zhao, Rui Shi, Yuan-Lin Zhou, Jian Zheng, Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures 112, 2018, pp. 185-189, https://doi.org/10.1016/j.jpcs.2017.09.007.
  16. Fluka: a multi-particle transport code", A. Ferrari, P.R. Sala, A. Fass'o and J. Ranft, CERN-2005-10 (2005), INFN/TC 05/11, SLAC-R-773
  17. T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fass'o, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The fluka code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214. https://doi.org/10.1016/j.nds.2014.07.049
  18. https://www.radiationsoftware.com/microshield.
  19. M. Rashad, Performance efficiency and kinetic studies of water purification using ZnO and MgO nanoparticles for potassium permanganate, Opt. Quant. Electron. 51 (2019) 291. https://doi.org/10.1007/s11082-019-2003-9
  20. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, Nevzat Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems, J. Non-Cryst. Solids 518 (2019) 92-102, https://doi.org/10.1016/j.jnoncrysol.2019.05.012.
  21. H.O. Tekin, E. Kavaz, Athanasia Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2-PbO-CdO-Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron Radiation, Ceram. Int. 45 (2019) 19206-19222, https://doi.org/10.1016/j.ceramint.2019.06.168.
  22. Shams A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances ofxPbO-(99-x)B2O3-Sm2O3 glass system, Ceram. Int. (7 August 2019), https://doi.org/10.1016/j.ceramint.2019.08.065.
  23. Shams A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO-(100-x)P2O5 glass system: a broad range investigation, Appl. Phys. A 125 (2019) 640, https://doi.org/10.1007/s00339-019-2941-x.
  24. H.O. Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, Ozge Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses, Ceram. Int. (22 August 2019), https://doi.org/10.1016/j.ceramint.2019.08.204.
  25. Ozge Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation, Ceram. Int. (11 September 2019), https://doi.org/10.1016/j.ceramint.2019.09.095.
  26. Shamsan S. Obaid, Dhammajot K. Gaikwad, Pravina P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.20.
  27. V.V. Awasarmol, D.K. Gaikwad, Shamsan S. Obaid, P.P. Pawar, Gamma radiation studies on organic nonlinear optical materials in the energy range 122-1330 keV, Proc. Natl. Acad. Sci. India Sect. A (Phys. Sci.): Phys. Sci. 1-6 (2019), https://doi.org/10.1007/s40010-019-00636-1.17.09.022.
  28. D.K. Gaikwad, M.I. Sayyed, S.N. Boteward, Shamsan S. Obaid, Z.Y. Khattari, U.P. Gawai, Feras Afsaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503 (2019) 158-168, https://doi.org/10.1016/j.jnoncrysol.2018.09.038.
  29. Shamsan S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahrough, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018), 11-12, https://doi.org/10.1080/10420150.2018.1505890, 900-914.

Cited by

  1. Lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors vol.31, pp.17, 2020, https://doi.org/10.1007/s10854-020-04009-y
  2. Fabrication of Dye-Sensitized Solar Cells (DSSC) Using Mg-Doped ZnO as Photoanode and Extract of Rose Myrtle (Rhodomyrtus tomentosa) as Natural Dye vol.2021, 2020, https://doi.org/10.1155/2021/4033692
  3. A Systematical Characterization of TeO2-V2O5 Glass System Using Boron (III) Oxide and Neodymium (III) Oxide Substitution: Resistance Behaviors against Ionizing Radiation vol.11, pp.7, 2020, https://doi.org/10.3390/app11073035
  4. B2O3-Bi2O3-Li2O3-Cr2O3 glasses: fabrication, structure, mechanical, and gamma radiation shielding qualities vol.57, pp.4, 2020, https://doi.org/10.1007/s41779-021-00599-w
  5. Structural, surface morphology and radiation shielding properties of barium ferrite powder vol.96, pp.9, 2020, https://doi.org/10.1088/1402-4896/ac03e0
  6. Mixed modifier effect in lithium manganese metaphosphate glasses on the emission of highly dispersed Mn2+ centers for red-LED vol.47, pp.22, 2020, https://doi.org/10.1016/j.ceramint.2021.08.143
  7. Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: physical, structural, optical and nuclear radiation attenuation properties vol.15, 2021, https://doi.org/10.1016/j.jmrt.2021.09.138
  8. ZnO- Bi2O3 nanopowders: Fabrication, structural, optical, and radiation shielding properties vol.48, pp.3, 2020, https://doi.org/10.1016/j.ceramint.2021.10.124
  9. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems vol.424, pp.no.pb, 2022, https://doi.org/10.1016/j.jhazmat.2021.127416
  10. Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O vol.192, 2022, https://doi.org/10.1016/j.radphyschem.2021.109922