DOI QR코드

DOI QR Code

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Gulcu, Saban (Department of Computer Engineering, Necmettin Erbakan University)
  • Received : 2019.07.08
  • Accepted : 2020.03.15
  • Published : 2020.09.10

Abstract

Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Necmettin Erbakan University, Natural Scientific Research Project (BAP) Project No: 181219012

References

  1. Abdelaziz, H. H., M. A. A. Meziane, A. A. Bousahla, A. Tounsi, S. Mahmoud and A. S. Alwabli (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abdelhak, Z., L. Hadji, T. H. Daouadji and E. Adda Bedia (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  3. Adim, B. and T. H. Daouadji (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223. http://dx.doi.org/10.12989/amr.2016.5.4.223.
  4. Adim, B., T. H. Daouadji and B. Abbes (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
  5. Adim, B., T. H. Daouadji, B. Rabia and L. Hadji (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  6. Aggarwal, C.C. (2018), Neural Networks and Deep Learning, Springer, Germany.
  7. Akgun, G. and H. Kurtaran (2019), "Large displacement transient analysis of FGM super-elliptic shells using GDQ method", Thin. Wall. Struct. 141: 133-152. https://doi.org/10.1016/j.tws.2019.03.049.
  8. Arioui, O., K. Belakhdar, A. Kaci and A. Tounsi (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  9. Azqandi, M. S., N. Nooredin and A. Ghoddosian (2018), "Optimization of spring back in U-die bending process of sheet metal using ANN and ICA", Struct. Eng. Mech., 65(4), 447-452. https://doi.org/10.12989/sem.2018.65.4.447.
  10. Bachman, L.F. (2004), Statistical Analyses for Language Assessment Book, Cambridge University Press, United Kingdom.
  11. Bahadir, F. and F. S. Balik (2017), "Predicting Displacement Data of Three-Dimensional Reinforced Concrete Frames with Different Strengthening Applications Using ANN", Periodica Polytechnica Civil Eng., 61(4), 843-856. https://doi.org/10.3311/PPci.9652.
  12. Belabed, Z., A. A. Bousahla, M. S. A. Houari, A. Tounsi and S. Mahmoud (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  13. Belabed, Z., M. S. A. Houari, A. Tounsi, S. Mahmoud and O. A. Beg (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B. Eng., 60: 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  14. Beldjelili, Y., A. Tounsi and S. Mahmoud (2016), "Hygro-thermomechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  15. Benferhat, R., T. H. Daouadji and B. Adim (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107. http://dx.doi.org/10.12989/amr.2016.5.2.107.
  16. Benferhat, R., T. Hassaine Daouadji, L. Hadji and M. Said Mansour (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  17. Benyamina, A. B., B. Bouderba and A. Saoula (2018), "Bending Response of Composite Material Plates with Specific Properties, Case of a Typical FGM" Ceramic/Metal" in Thermal Environments", Periodica Polytech. Civil Eng., 62(4), 930-938. https://doi.org/10.3311/PPci.11891.
  18. Bouderba, B., M. S. A. Houari and A. Tounsi (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  19. Bouhadra, A., S. Benyoucef, A. Tounsi, F. Bernard, R. B. Bouiadjra and M. Sid Ahmed Houari (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therhaml. Stress., 38(6), 630-650. https://doi.org/10.1080/01495739.2015.1015900.
  20. Bourada, F., K. Amara, A. A. Bousahla, A. Tounsi and S. Mahmoud (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  21. Bousahla, A. A., S. Benyoucef, A. Tounsi and S. Mahmoud (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  22. Bre, F., J. M. Gimenez and V. D. Fachinotti (2018), "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energy and Build., 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045.
  23. Cain, G. (2016), Artificial Neural Networks: New Research, Nova Science Publishers, New York, USA.
  24. Chakraborty, A., S. Gopalakrishnan and J. Reddy (2003), "A new beam finite element for the analysis of functionally graded materials", J. Mech. Sci.,45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.
  25. Chang, M., J. K. Kim and J. Lee (2019), "Hierarchical neural network for damage detection using modal parameters", Struct. Eng. Mech., 70(4), 457-466. https://doi.org/10.12989/sem.2019.70.4.457.
  26. Cho, J. and S. Shin (2004), "Material composition optimization for heat-resisting FGMs by artificial neural network", Compos. Part A Appl. Sci. Manufact., 35(5), 585-594. https://doi.org/10.1016/j.compositesa.2003.12.003.
  27. Daouadji, T. H. and B. Adim (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141. http://dx.doi.org/10.12989/amr.2016.5.3.141.
  28. Daouadji, T. H. and R. Benferhat (2016), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 035. http://dx.doi.org/10.12989/amr.2016.5.1.035.
  29. Ebrahimi, F. and A. Dabbagh (2018), "NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems", Struct. Eng. Mech., 68(6), 701-711. https://doi.org/10.12989/sem.2018.68.6.701.
  30. El-Haina, F., A. Bakora, A. A. Bousahla, A. Tounsi and S. Mahmoud (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  31. Eratll, N. and A. Akoz (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65(4), 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8.
  32. Ersoy, H., K. Mercan and O. Civalek (2018), "Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods", Compos. Struct.,183, 7-20. https://doi.org/10.1016/j.compstruct.2016.11.051.
  33. Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B. Eng., 153: 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056.
  34. Gemi, L., C. Aksoylu, S. Yazman, Y. O. Ozkilic and M. H. Arslan (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  35. Gemi, L., M. Kara and A. Avci (2016), "Low velocity impact response of prestressed functionally graded hybrid pipes", Compos. Part B. Eng., 106, 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025.
  36. Gemi, L., M. Kayrici, M. Uludag, D. S. Gemi and O. S. Sahin (2018), "Experimental and statistical analysis of low velocity impact response of filament wound composite pipes", Compos. Part B. Eng., 149, 38-48. https://doi.org/10.1016/j.compositesb.2018.05.006.
  37. Hadi, A., M. Z. Nejad, A. Rastgoo and M. Hosseini (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663.
  38. Hadj, B., B. Rabia and T. H. Daouadji (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.
  39. Hore, S., S. Chatterjee, S. Sarkar, N. Dey, A. S. Ashour, D. Balas-Timar and V. E. Balas (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. http://dx.doi.org/10.12989/sem.2016.58.3.459.
  40. Jing, L.-l., P.-j. Ming, W.-p. Zhang, L.-r. Fu and Y.-p. Cao (2016), "Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method", Compos. Struct.,138, 192-213. https://doi.org/10.1016/j.compstruct.2015.11.027.
  41. Kaci, A., M. S. A. Houari, A. A. Bousahla, A. Tounsi and S. Mahmoud (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  42. Kadioglu, F. and A. Y. Akoz (2003), "The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams", Struct. Eng. Mech., 15(6), 735-752. https://doi.org/10.12989/sem.2003.15.6.735.
  43. Karina, C. N., P.-j. Chun and K. Okubo (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
  44. Kou, X., G. T. Parks and S. T. Tan (2012), "Optimal design of functionally graded materials using a procedural model and particle swarm optimization", Comput.-Aided Design, 44(4), 300-310. https://doi.org/10.1016/j.cad.2011.10.007.
  45. Labossiere, P. and N. Turkkan (1993), "Failure prediction of fibrereinforced materials with neural networks", J. Reinforced Plastics Compos., 12(12), 1270-1280. https://doi.org/10.1177%2F073168449301201202. https://doi.org/10.1177/073168449301201202
  46. Litak, G., J. Gajewski, A. Syta and J. Jonak (2008), "Quantitative estimation of the tool wear effects in a ripping head by recurrence plots", J. Theoretical Appl. Mech., 46(3), 521-530.
  47. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  48. Madenci, E., Y. O. Ozkilic and L. Gemi (2020), "Experimental and Theoretical Investigation on Flexure Performance of Pultruded GFRP Composite Beams with Damage Analyses", Compos. Struct., 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  49. Madenci, E. and A. Ozutok (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97. https://doi.org/10.12989/sem.2020.73.1.097.
  50. Mirjavadi, S. S., B. M. Afshari, N. Shafiei, A. Hamouda and M. Kazemi (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  51. Nejad, M. Z., A. Hadi and A. Farajpour (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
  52. Nejad, M. Z., A. Hadi, A. Omidvari and A. Rastgoo (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
  53. Nguyen, T.-K., T. P. Vo and H.-T. Thai (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B. Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  54. Nielsen, D. and R. Pitchumani (2001), "Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization", Compos. Part A Appl. Sci. Manufact., 32(12), 1789-1803. https://doi.org/10.1016/S1359-835X(01)00013-6.
  55. Ozutok, A., E. Madenci and F. Kadioglu (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.
  56. Ozutok, A. and E. Madenci (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", J. Struct. Stabilibty Dynam., 13(02), 1250056. https://doi.org/10.1142/S0219455412500563.
  57. Ozutok, A. and E. Madenci (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", J. Mech. Sci., https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  58. Peng-hui, L., Z. Hong-ping, L. Hui and W. Shun (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., 15(1), 227-244. https://doi.org/10.12989/sss.2015.15.1.227
  59. Pidaparti, R. and M. Palakal (1993), "Material model for composites using neural networks", AIAA J., 31(8), 1533-1535. https://doi.org/10.2514/3.11810.
  60. Pradhan, K. and S. Chakraverty (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B. Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
  61. Prakash, T. and M. Ganapathi (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B. Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005.
  62. Rabia, B., T. H. Daouadji and R. Abderezak (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  63. Raschka, S. (2015), Python Machine Learning, Packt Publishing Ltd., Birmingham, United Kingdom.
  64. Rashid, T. (2016), Make Your Own Neural Network, CreateSpace Independent Publishing Platform, USA.
  65. Rastbood, A., Y. Gholipour and A. Majdi (2017), "Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network", Periodica Polytech. Civil Eng., 61(4), 664-676. https://doi.org/10.3311/PPci.9700.
  66. Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
  67. Skorpil, V. and J. Stastny (2006), "Neural networks and back propagation algorithm", Electron Bulg Sozopol, 20-22.
  68. Solmaz, S. and O. Civalek (2018), "Numerical Methods for FGM Composites Shells and Plates", J. Eng. Appl. Sci., 10(1), 5-12. http://dx.doi.org/10.24107/ijeas.415294.
  69. Talha, M. and B. Singh (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Modell.,34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  70. Trinh1a, T.-H., D.-K. Nguyen2b, B. S. Gan and S. Alexandrov3c (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., 58(3), 515-532. http://dx.doi.org/10.12989/sem.2016.58.3.515.
  71. Twomey, J. and A. Smith (1995), "Performance measures, consistency, and power for artificial neural network models", Math. Comput. Modell.,21(1-2), 243-258. https://doi.org/10.1016/0895-7177(94)00207-5.
  72. Wang, B., J. H. Ma and Y. P. Wu (2013), "Application of artificial neural network in prediction of abrasion of rubber composites", Mater. Design, 49, 802-807. https://doi.org/10.1016/j.matdes.2013.01.047.
  73. Yadav, A. K., H. Malik and A. Mittal (2015), "Artificial neural network fitting tool based prediction of solar radiation for identifying solar power potential", J. Electr. Eng, 15(2), 25-29.
  74. Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.
  75. Zhang, D.-G. and Y.-H. Zhou (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
  76. Zhang, Z. and K. Friedrich (2003), "Artificial neural networks applied to polymer composites: A review", Compos. Sci. Technol., 63(14), 2029-2044. https://doi.org/10.1016/S0266-3538(03)00106-4.
  77. Zhao, Y., M. Noori and W. A. Altabey (2017), "Damage detection for a beam under transient excitation via three different algorithms", Struct. Eng. Mech., 64(6), 803-817. https://doi.org/10.12989/sem.2017.64.6.803.
  78. Ziane, N., S. A. Meftah, G. Ruta, A. Tounsi and E. A. Adda Bedia (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., 54(3), 579-595. https://doi.org/10.12989/sem.2015.54.3.579.
  79. Zine, A., A. Tounsi, K. Draiche, M. Sekkal and S. Mahmoud (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.1016/j.compstruct.2012.08.025.

Cited by

  1. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
  2. Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.613
  3. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  4. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  5. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  6. Analysis of a Preliminary Design Approach for Conformal Lattice Structures vol.11, pp.23, 2021, https://doi.org/10.3390/app112311449