DOI QR코드

DOI QR Code

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model

3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석

  • An, Inkyung (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Hyungseok (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Sewoong (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, Ingu (Han-River Environment Research Center, National Institute of Environmental Research) ;
  • Choi, Jungkyu (Water Environmental Management Department, Korea Water Resources Corporation (K-water)) ;
  • Kim, Jiwon (Water Environmental Management Department, Korea Water Resources Corporation (K-water))
  • Received : 2020.02.28
  • Accepted : 2020.06.30
  • Published : 2020.07.30

Abstract

Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Keywords

References

  1. Bae, D. Y., Yang, E. C., Jung, S. H., and Lee, J. H. (2007). Nutrients and chlorophyll dynamics along the longitudinal gradients of Daechung Reservoir, Korean Journal of Limnology, 40(2), 285-293. [Korean Literature]
  2. Catalan, N., Marce, R., Kothawala, D. N., and Tranvik, L. J. (2016). Organic carbon decomposition rates controlled by water retention time across inland waters, Nature geoscience, 9(7), 501-504. https://doi.org/10.1038/ngeo2720
  3. Choi, K. S. (2000). Dynamics of dissolved organic carbon in a deep reservoir, lake Soyang, Ph.D dissertation, Kangwon National University, Korea.
  4. Chung, S. W. and Oh, J. K. (2006). River water temperature variations at upstream of Daecheong lake during rainfall events and development of prediction models, Journal of Korea Water Resources Association, 39(1), 79-88. [Korean Literature] https://doi.org/10.3741/JKWRA.2006.39.1.079
  5. Chung, S. W., Imberger, J., Hipsey, M. R., and Lee, H. S. (2014). The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir, Ecological Modelling, 289, 133-149. https://doi.org/10.1016/j.ecolmodel.2014.07.010
  6. Cole, T. M. and Tillman D. H. (1999). Water quality modeling of lake Monroe using CE-QUAL-W2, Miscellaneous Paper EL-99-1.
  7. Cole, T. M. and Tillman, D. H. (2001). Water quality modeling of Allatoona and West Point reservoirs using CE-QUAL-W2, U.S. Army Corps of Engineers.
  8. Cole, T. M. and Wells, S. A. (2017). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 4.1. user manual, Department of Civil and Engineering, Portland State University.
  9. Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T., and Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochemical Cycles, 22(1), GB1018.
  10. Drake, T. W., Raymond, P. A., and Spencer, R. G. M. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty, Limnology and Oceanography Letters, 3(3), 132-142. https://doi.org/10.1002/lol2.10055
  11. Escoffier, N., Bensoussan, N., Vilmin, L., Flipo, N., Rocher, V., David, A., and Groleau, A. (2018). Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine river, Environmental Science and Pollution Research, 25(24), 23451-23467. https://doi.org/10.1007/s11356-016-7096-0
  12. Fee, E. J. (1973). A numerical model for determining integral primary production and its application to Lake Michigan, Journal of the Fisheries Board of Canada, 30(10), 1447-1468. https://doi.org/10.1139/f73-235
  13. Fischer, H. B., List, E. J., Koh, R., Imberger. J., and Brooks, N. H. (1979). Mixing in inland and coastal waters, Academic Press, New York. NY.
  14. Fukushima, T., Park, J. C., Imai, A., and Matsushige, K. (1996). Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquatic Sciences, 58(2), 139-157. https://doi.org/10.1007/BF00877112
  15. Hama, T. and Handa, N. (1983). The seasonal variation of organic constituents in a eutrophic lake, Lake Suwa, Japan. Part II. Dissolved organic matter, Archiv fur Hydrobiologie, 98(4), 443-462.
  16. Han, Q., Wang, B., Liu, C. Q., Wang, F., Peng, X., and Liu, X. L. (2018). Carbon biogeochemical cycle is enhanced by damming in a karst river, Science of the Total Environment, 616, 1181-1189. https://doi.org/10.1016/j.scitotenv.2017.10.202
  17. Hipsey, M. R., Romero, J. R., Antenucci, J. P., and Hamilton, D. (2005). Computational aquatic ecosystem dynamics model: CAEDYM v2, v2.2 science manual, Centre for Water Research, University of Western Australia.
  18. Han River Flood Control Office (HRFCO). (2020). Water Resources Management Information System (WAMIS), http://www.wamis.go.kr (accessed Jan. 2020).
  19. Hodges, B. and Dallimore, C. (2019). Aquatic ecosystem model: AEM3D v1.0 user manual, HydroNumerics, Victoria, Australia.
  20. Hwang, G. S., Kim, D. S., Heo, W. M., and Kim, B. C. (1994). The primary productivity and the organic carbon loading from the watershed and fishfarming in lake Daechung, Korean Journal of Limnology, 27(4), 299-306. [Korean Literature]
  21. Jeong, D. H., Chung, H. M., Cho, Y. S., Kim, E. S., Kim, C. S., Park, J. W., and Lee, W. S. (2018). A study on operation and management for TOC removal of public sewage treatment works, Journal of Korean Society of Water and Wastewater, 32(6), 535-550. [Korean Literature] https://doi.org/10.11001/jksww.2018.32.6.535
  22. Jonsson, A., Meili, M., Bergstrom, A. K., and Jansson, M. (2001). Whole lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden), Limnology and Oceanography, 46(7), 1691-1700. https://doi.org/10.4319/lo.2001.46.7.1691
  23. Kennedy, R. H., Thornton, K. W., and Gunkel. R. C. (1982). The establishment of water quality gradients in reservoirs, Canadian Water Resources Journal, 7(1), 71-87. https://doi.org/10.4296/cwrj0701071
  24. Keskitalo, J. and Eloranta, P. (1999). Limnology of humic water, Backhuys Publishers, Leiden, Netherlands.
  25. Kim, B. C. , Choi, K, S. , Kim, C. G. , Lee, U. H. , Kim, D. S. , and Park, J. C. (1998). The distribution of dissolved and particulate organic carbon in Lake Soyang, Korean Journal of Limnology, 31(1), 17-24. [Korean Literature]
  26. Kim, B. C., Choi, K. S., Kim, C. G., Lee, U. H., and Kim, Y. H. (2000). Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea, Water Research, 34(14), 3495-3504. https://doi.org/10.1016/S0043-1354(00)00104-4
  27. Kim, B. C., Hwang, G. S., and Kim, D. S. (1999). Primary production and organic carbon budget in lake Soyang, Journal of Environmental Research, 32(3), 200-206. [Korean Literature]
  28. Kim, B. C., Kim, D. S., Hwang, G. S., and Cho, K. S. (1991). Primary production of phytoplankton and macrophytes in an eutrophic lagoon, lake Kyungpo, Korea, Report of the Suwa Hydrobiological Station, Shinshu University, 7, 99-103.
  29. Kim, D. S. and Kim, B. C. (1990). Primary productivity in lake Paldang, Korean Journal of Limnology, 23(3), 167-179. [Korean Literature]
  30. Kim, G. H., Lee, J. H., and An, K. G. (2012). Spatio-temporal fluctuations with influences of inflowing tributary streams on water quality in Daecheong reservoir, Korean journal of limnology, 45(2), 158-173. [Korean Literature]
  31. Kim, J. K., Kim, B. C., Jung, S. M., Jang, C. W., Shin, M. S., and Lee, Y. K. (2007). The distribution of DOM and POM and the composition of stable carbon isotopes in streams of agricultural and forest watershed located in the Han river system, Korea, Korean journal of limnology, 40(1), 93-102. [Korean Literature]
  32. Kim, S. J., Chung, S. W., Park, H. S., Oh, J. K., and Park, D. Y. (2018). Estimation of ecosystem metabolism using high-frequency DO and water temperature sensor data in Daecheong lake, Journal of Korean Society on Water Environment, 34(6), 579-580. [Korean Literature] https://doi.org/10.15681/KSWE.2018.34.6.579
  33. Kim, S. W. (2019). Characteristics of refractory organic matter in small streams into the Daecheong reservoir, Master Dissertation, Chungbuk National University, Chungbuk. [Korean Literature]
  34. Kunz, M. J., Anselmetti, F. S., Wuest, A., Wehrli, B., Vollenweider, A., Thuring, S., and Senn, D. B. (2011). Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe), Journal of geophysical research, 166(G3), 1-13.
  35. K-water. (2006). Sedimentation survey report : Daechung Dam, K-water. [Korean Literature]
  36. Leonard, B. P. (1991). The ultimate conservative difference scheme applied to unsteady one-dimensional advection, Computer Methods in Applied Mechanics and Engineering, 88(1), 17-74. https://doi.org/10.1016/0045-7825(91)90232-U
  37. Mendonca, R., Kosten, S., Sobek, S., Cardoso, S. J., Figueiredo-Barros, M. P., Estrada, C. H. D., and Roland, F. (2016) Organic carbon burial efficiency in a subtropical hydroelectric reservoir, Biogeosciences, 13, 3331-3342. https://doi.org/10.5194/bg-13-3331-2016
  38. Mendonca, R., Kosten, S., Sobek, S., Cole, J. J., Bastos, A. C., Albuquerque, A. L., Cardoso, S. J., and Roland, F. (2014) Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach, Ecosystems, 17(3), 430-441. https://doi.org/10.1007/s10021-013-9735-3
  39. Mendonca, R., Muller, R. A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., and Sobek, S. (2017). Organic carbon burial in global lakes and reservoirs, Nature Communications, 8(1), 1-7. https://doi.org/10.1038/s41467-016-0009-6
  40. Ministry of Environment (ME). (2020). Water Environment Information System (WEIS), http://water.nier.go.kr/publicMain/mainContent.do (accessed Jan. 2020).
  41. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 50(3), 885-900.
  42. Mulholland, P. J. and Elwood, J. W. (1982). The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle, Tellus, 34(5), 490-499. https://doi.org/10.1111/j.2153-3490.1982.tb01837.x
  43. Nemeth, A., Paolini, J., and Herrera. R. (1982). Carbon transport in the Orinoco river: preliminary results, Transport of carbon and minerals in major world rivers, 52, 357-364.
  44. Pacheco, F. S., Soares, M. C. S., Assireu, A. T., Curtarelli, M. P., Roland, F., Abril, G., Stech, J. L., Alvala, P. C., and Ometto, J. P. (2015). The Effects of River Inflow and Retention Time on the Spatial heterogeneity of Chlorophyll and Water-air $CO_2$ Fluxes in a Tropical Hydropower Reservoir, Biogeosciences, 12(1), 147-162. https://doi.org/10.5194/bg-12-147-2015
  45. Parks, S. J. and Baker, L. A. (1997). Sources and transport of organic carbon in an Arizona river-reservoir system, Water Research, 31(7), 1751-1759. https://doi.org/10.1016/S0043-1354(96)00404-6
  46. Phyoe. W. W. and Wang, F. (2019). A review of carbon sink or source effect on artificial reservoirs, International Journal of Environmental Science and Technology, 16, 2161-2174. https://doi.org/10.1007/s13762-019-02237-2
  47. Striegl, R. G. and Michmerhuizen, C. M. (1998). Hydrologic influence on methane and carbon dioxide dynamics at two north central Minnesota lakes, Limnology and Oceanography, 43(7), 1519-1529. https://doi.org/10.4319/lo.1998.43.7.1519
  48. Thornton, K. W., Kimmel, B. L., and Payne, F. E. (1990). Reservoir limnology: ecological perspectives, Wiley-Interscience, 246.
  49. Thurman, E. M. (1985). Organic geochemistry of natural waters, Developments in Biogeochemistry, (2), Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, Netherlands.
  50. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P. Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Wachenfeldt, E. V., and Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate, Limnology and oceanography, 54(6, part 2), 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  51. Vollenweider, R. A. (1965). Calculation models of photosynthesisdepth curves and some implications regarding day rate estimates in primary production measurements, Primary Productivity in Aquatic Environments, Goldman, C. R. (ed. ), University of california press, United States, 425-457.
  52. Wetzel, R. G. (1983). Limnology, Saunders College Publishing, Orlando.
  53. Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems, Academic press, San Diego, USA.
  54. Yi, G. H., Kim, Y. K., Lee, Y. S., and Kim, D. J. (2006). Mass balance analysis and application of the WASP model on the internal organic matter production in lake Uiam, Journal of Korean Society on Water Environment, 1-11. [Korean Literature]
  55. Yu, S. J., Ha, S. R., Hwang, J. Y., and Kim, C. S. (2003). Characteristics of aqueous organic matter and disinfection By-products(DBPs) formation potentials in Guem river, Journal of Korean Society on Water Environment, 19(6), 707-713. [Korean Literature]
  56. Yu, S. J., Kim, C. S., Ha, S. R., Hwang, J. Y., and Chae, M. H. (2005). Analysis of natural organic matter (NOM) characteristics in the Geum river, Journal of Korean Society on Water Environment, 21(2), 125-131. [Korean Literature]
  57. Zhang, L., Xue, M.. Wang, M., Cai, W. J., Wang, L., and Yu, Z. (2014). The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir, Journal of Geophysical Research: Biogeosciences, 119(5), 741-757. https://doi.org/10.1002/2012JG002230