DOI QR코드

DOI QR Code

Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP

고해상도 KMAPP 자료를 활용한 제주국제공항에서 저층 윈드시어 예측

  • Min, Byunghoon (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Choi, Hee-Wook (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Jeong, Hyeong-Se (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Kyu-Rang (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Seungbum (High Impact Weather Research Department, National Institute of Meteorological Sciences)
  • 민병훈 (국립기상과학원 재해기상연구부) ;
  • 김연희 (국립기상과학원 미래기반연구부) ;
  • 최희욱 (국립기상과학원 미래기반연구부) ;
  • 정형세 (국립기상과학원 미래기반연구부) ;
  • 김규랑 (국립기상과학원 재해기상연구부) ;
  • 김승범 (국립기상과학원 재해기상연구부)
  • Received : 2020.06.26
  • Accepted : 2020.09.16
  • Published : 2020.09.30

Abstract

Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.

Keywords

References

  1. Boilley, A., and J.-F. Mahfouf, 2013: Wind shear over the Nice Cote d'Azur airport: case studies. Nat. Hazards Earth Syst. Sci., 13, 2223-2238, doi:10.5194/nhess-13-2223-2013.
  2. Bowles, R. L., 1990a: Reducing windshear risk through airborne systems technology. Conf. Paper, The 17th Congress of the ICAS, Stockholm, Sweden, 27 pp.
  3. Bowles, R. L., 1990b: Windshear detection and avoidance: airborne systems survey. Conf. Paper, 29th IEEE Conference on Decision and Control, Honolulu, HI, USA, 708-736.
  4. Carruthers, D., A. Ellis, J. Hunt, and P. W. Chan, 2014: Modelling of wind shear downwind of mountain ridges at Hong Kong International Airport. Meteorol. Appl., 21, 94-104, doi:10.1002/met.1350.
  5. Chan, P. W., 2012: A significant wind shear event leading to aircraft diversion at the Hong Kong international airport. Meteorol. Appl., 19, 10-16, doi:10.1002/met.242.
  6. Chan, P. W., and Y. F. Lee, 2011: Application of a groundbased, multi-channel microwave radiometer to the alerting of low-level windshear at an airport. Meteorol. Z., 20, 423-429, doi:10.1127/0941-2948/2011/0275.
  7. Chen, F., H. Peng, P.-W. Chan, and X. Zeng, 2019: Lowlevel wind effects on the glide paths of the north runway of HKIA: A wind tunnel study. Build. Environ., 164, 106337, doi:10.1016/j.buildenv.2019.106337.
  8. Ding, J., X.-Y. Zhuge, Y. Wang, and A. Xiong, 2015: Evaluation of Chinese Aircraft Meteorological Data Relay (AMDAR) weather reports. J. Atmos. Oceanic Technol., 32, 982-992, doi:10.1175/JTECH-D-14-00145.1.
  9. Drue, C., W. Frey, A. Hoff, and T. Hauf, 2008: Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q. J. R. Meteorol. Soc., 134, 229-239. https://doi.org/10.1002/qj.205
  10. ICAO, 2005: Manual on low-level wind shear, 1st edition. International Civil Aviation Organization, 213 pp.
  11. Keller, T. L., S. B. Trier, W. D. Hall, R. D. Sharman, M. Xu, and Y. Liu, 2015: Lee waves associated with a commercial jetliner accident at Denver International Airport. J. Appl. Meteor. Climatol., 54, 1373-1392, doi:10.1175/JAMC-D-14-0270.1.
  12. Kessler, E., 1990: Low-level windshear alert systems and doppler radar in aircraft terminal operations. J. Aircraft, 27, 423-428. https://doi.org/10.2514/3.25293
  13. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.
  14. Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western pacific cyclone. Mon. Wea. Rev., 142, 2794-2813, doi:10.1175/MWRD-14-00008.1.
  15. Lee, K.-O., S. Shimizu, M. Maki, C.-H. You, H. Uyeda, and D.-I. Lee, 2010: Enhancement mechanism of the 30 June 2006 precipitation system observed over the northwestern slope of Mt. Halla, Jeju Island, Korea. Atmos. Res., 97, 343-358, doi:10.1016/j.atmosres.2010.04.008.
  16. Lee, K.-O., H. Uyeda, and D.-I. Lee, 2014: Effect of an isolated elliptical terrain (Jeju Island) on rainfall enhancement in a moist environment. Tellus A, 66, 20484, doi:10.3402/tellusa.v66.20484.
  17. Lewis, M. S., P. A. Robinson, D. A. Hinton, and R. L. Bowles, 1994: The relationship of an integral wind shear hazard to aircraft performance limitations. NASA TM-109080, 16 pp.
  18. Lilly, D. K., 1978: A Severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 59-77. https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2
  19. NIMS, 2017: Korea Meteorological Administration Post-Processing (KMAPP) user manual. NIMS Tech. Rep., 11-1360620-000101-01, 14 pp (in Korean).
  20. Pattantyus, A. K., S. Chiao, and S. Czyzyk, 2011: Improving high-resolution model forecasts of downslope winds in the Las Vegas valley. J. Appl. Meteor. Climatol., 50, 1324-1340, doi:10.1175/2011JAMC2586.1.
  21. Rahn, D. A., and C. J. Mitchell, 2016: Diurnal climatology of the boundary layer in southern California using AMDAR temperature and wind profiles. J. Appl. Meteor. Climatol., 55, 1123-1137, doi:10.1175/JAMCD-15-0234.1.
  22. Regmi, R. P., and S. Maharjan, 2015: Trapped mountain wave excitations over the Kathmandu valley, Nepal. Asia-Pac. J. Atmos. Sci., 51, 303-309, doi:10.1007/s13143-015-0078-1.
  23. Shun, C. M., and P. W. Chan, 2008: Applications of an infrared doppler lidar in detection of wind shear. J. Atmos. Oceanic. Technol., 25, 637-655. https://doi.org/10.1175/2007JTECHA1057.1
  24. Strajnar, B., 2012: Validation of Mode-S meteorological routine air report aircraft observations. J. Geophys Res. Atmos., 117, D23110, doi:10.1029/2012JD018315.
  25. Tse, S. M., M. Hagio, and Y. Maeda, 2019: Windshear detection by terminal doppler weather radar during tropical cyclone Mujigae in 2015. Meteorol. Appl., 26, 620-631, doi:10.1002/met.1789.
  26. Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898-915. https://doi.org/10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2
  27. WMO, 2014: The benefits of AMDAR data to meteorology and aviation. WMO Tech. Rep., 2014-1, 7 pp.
  28. Zhang, Y., D. Li, Z. Lin, J. A. Ananello Jr., and Z. Gao, 2019: Development and evaluation of a long-term data record of planetary boundary layer profiles from aircraft meteorological reports. J. Geophys. Res., 124, 2008-2030, doi:10.1029/2018JD029529.