DOI QR코드

DOI QR Code

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods

기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가

  • Kim, Chul-Gyum (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jeongwoo (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jeong Eun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hyeonjun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 김철겸 (한국건설기술연구원 국토보전연구본부) ;
  • 이정우 (한국건설기술연구원 국토보전연구본부) ;
  • 이정은 (한국건설기술연구원 국토보전연구본부) ;
  • 김현준 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.07.08
  • Accepted : 2020.08.21
  • Published : 2020.09.30

Abstract

This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.

본 연구에서는 FAO-56 Penman-Monteith (FAO PM)를 비롯하여 Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, Thornthwaite 등 총 8가지 기준증발산량 산정방법을 이용하여 전국 기상청 ASOS 지점을 대상으로 각 방법에 따른 기준증발산량을 산정하여 비교하였다. 또한 가장 신뢰성이 높은 것으로 알려진 FAO PM값을 기준으로 나머지 7가지 방법에 의한 월별 편차를 분석하여 지점별 월별 보정계수를 도출하고, 보정에 따른 개선효과를 평가하였다. 먼저 각 방법의 기본계수를 적용하여 기준증발산량을 산정한 결과, 방법에 따라 큰 편차를 나타내었으며 Hansen 방법이 상대적으로 FAO PM과 유사한 것으로 나타났다. 반면, Hamon과 Jensen-Haise 방법은 여름철을 중심으로 타 방법대비 매우 큰 값을 보였으며, FAO PM과의 편차도 크게 나타났다. 지역별로는 동해안 일부지역을 제외하고 대부분의 지역에서 FAO PM과 비교하여 기준증발산량을 과다하게 산정하는 것으로 분석되었다. FAO PM 결과와의 편차를 기반으로 지점별 월별 최적화된 보정계수를 도출하고 기준증발산량을 다시 비교한 결과, 지점에 따라 보정 전에 -46 mm~+88 mm의 범위를 보였던 월 평균값은 보정 후 -11 mm~+1 mm로 나타났으며, 연 평균값도 -393 mm~+354 mm (보정 전)에서 -33 mm~+9 mm (보정 후)로 보정을 통하여 편차가 크게 감소되었다. 또한, 기온자료만을 이용하는 Hamon, Hargreave-Samani, Thornthwaite 방법들도 보정을 통하여 FAO PM과 큰 차이없는 결과를 도출하였다. 특히 기온기반의 방법들은 기후변화 시나리오 중 상대적으로 불확실성이 낮은 기온자료만을 이용하여 미래의 장기간의 기준증발산량을 전망하거나, 월 또는 계절예측 기온정보를 이용하여 수개월간의 기준증발산량을 예측하는 경우에 유용하게 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 주요사업 "가뭄대응 중소하천 물부족 위험도 평가 및 물 확보 기술 개발" 과제의 연구비지원에 의해 수행되었습니다.

References

  1. Abd El-Wahed, M.H., and Abd El-Mageed, T.A. (2014). "Estimating reference evapotranspiration using modified Blaney-Criddle equation in arid region." Bothalia Journal, Vol. 44, No. 7, pp. 183-195.
  2. Ahmadi, S.H., and Fooladmand, H.R. (2008). "Spatially distributed monthly reference evapotranspiration derived from the calibration of Thornthwaite equation: A case study, South of Iran." Irrigation Science, Vol. 26, pp. 303-312. https://doi.org/10.1007/s00271-007-0094-8
  3. Alkaeed, O., Flores, C., Jinno, K., and Tsutsumi, A. (2006). "Comparison of several reference evapotranspiration methods for Itoshima peninsula area, Fukuoka, Japan." Memoirs of the Faculty of Engineering, Kyushu Univ., Vol. 66, No. 1, pp. 1-14.
  4. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage, Rome, Italy, pp. 23-56.
  5. Almorox, J., and Grieser, J. (2016). "Calibration of the Hargreaves- Samani method for the calculation of reference evapotranspiration in different Köppen climate classes." Hydrology Research, Vol. 42, No. 2, pp. 521-531. https://doi.org/10.2166/nh.2015.091
  6. Antonopoulos, V.Z., and Antonopoulos, A.V. (2018). "Evaluation of different methods to estimate monthly reference evapotranspiration in a Mediterranean area." Water Utility Journal, Vol. 18, pp. 61-77.
  7. Chang, X., Wang, S., Gao, Z., Luo, Y., and Chen, H. (2019). "Forecast of daily reference evapotranspiration using a modified daily Thornthwaite equation and temperature forecasts." Irrigation and Drainage, Vol. 68, pp. 297-317. https://doi.org/10.1002/ird.2309
  8. Choi, W., Choi, M. Oh, H., and Park, J. (2010). "Estimation on trends of reference evapotranspiration of weather station using reference evapotranspiration calculator software." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 2B, pp. 219-231.
  9. Cristea, N.C., Kampf, S.K., and Burges, S.J. (2013). "Revised coefficients for Priestley-Taylor and Makkink-Hansen equations for estimating daily reference evapotranspiration." Journal of Hydrologic Engineering, ASCE, Vol. 18, No. 10, pp. 1289-1300. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000679
  10. Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N'Diaye, M. K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K., and Saito, K. (2015). "Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River valley." Journal of Hydrology: Regional Studies, Vol. 3, pp. 139-159. https://doi.org/10.1016/j.ejrh.2015.02.002
  11. Droogers, P., and Allen, R.G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  12. Fooladmand, H.R., and Haghighat, M. (2007). "Spatial and temporal calibration of Hargreaves equation for calculating monthly ETo based on Penman-Monteith method." Irrigation and Drainage, Vol. 56, pp. 439-449. https://doi.org/10.1002/ird.305
  13. Grismer, M.E., Orang, M., Snyder, R., and Matyac, R. (2002). "Pan evaporation to reference evapotranspiration conversion methods." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 128, No. 3, pp. 180-184. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(180)
  14. Gurski, B.C., Jerszurki, D., and Souza, J.L.M. (2018). "Alternative methods of reference evapotranspiration for Brazilian climate types." Revista Brasileira de Meteorologia, Vol. 33, No. 3, pp. 567-578. https://doi.org/10.1590/0102-7786333015
  15. Hamon, W.R. (1960). Estimating potential evapotranspiration. Master thesis, Massachusetts Institute of Technology, Cambridge, M.A., U.S.
  16. Hamon, W.R. (1963). "Computation of direct runoff amounts from storm rainfall." International Association of Scientific Hydrology, Vol. 63, pp. 52-62.
  17. Hansen, S. (1984). "Estimation of potential and actual evapotranspiration." Nordic Hydrology, Vol. 15, pp. 205-212. https://doi.org/10.2166/nh.1984.0017
  18. Hargreaves, G.H., and Samani, Z.A. (1982). "Estimating potential evapotranspiration." Journal of Irrigation and Drainage Division, American Society of Civil Engineers, ASCE, Vol. 108, pp. 223-230.
  19. Hargreaves, G.H., and Samani, Z.A. (1985). "Reference crop evapotranspiration from temperature." American Society of Agricultural Engineers, Vol. 1, pp. 96-99.
  20. Heydari, M.M., Aghamajidi, R., Beygipoor, G., and Heydari, M. (2014). "Comparison and evaluation of 38 equations for estimating reference evapotranspiration in an arid region." Fresenius Environmental Bulletin, Vol. 23, No. 8a, pp. 1985-1996.
  21. Irmak, S., Allen, R.G., and Whitty, E.B. (2003). "Daily grass and alfalfa-reference evapotranspiration estimates and alfalfa-tograss evapotranspiration ratios in Florida." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 129, No. 5, pp. 360-370. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(360)
  22. Jensen, M.E., and Haise, H.R. (1963). "Estimating evapotranspiration from solar radiation." Journal of the Irrigation and Drainage Division, ASCE, Vol. 89, pp. 15-41. https://doi.org/10.1061/JRCEA4.0000287
  23. Kim, H., and Chung, S. (1999). "Estimation and comparison of reference crop evapotranspiration at the selected stationos in Korea." KCID Journal, KCID, Vol. 6, No. 2, pp. 37-46.
  24. Kim, S.J., Kim, M., Lim, C.-H., Lee, W.-K., and Kim, B.-J. (2017). "Applicability analysis of FAO56 Penman-Monteith methodology for estimating potential evapotranspiration in Andong Dam watershed using limited meteorological data." Journal of Climate Change Research, Vol. 8, No. 2, pp. 125-143. https://doi.org/10.15531/KSCCR.2017.8.2.125
  25. Lang, D., Zheng, J., Shi, Jiaqi, Liao, F., Ma, X., Wang, W., Chen, X., and Zhang, M. (2017). "A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in southwestern China." Water, Vol. 9, No. 10, p.734, doi:10.3390/w9100734.
  26. Lee, K.-H., and Park, J.-H. (2008). "Calibration of the Hargreaves equation for the reference evapotranspiration estimation on a nation-wide scale." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 6B, pp. 675-681.
  27. Lee, K.-H., Cho, H.-Y., and Oh, N.-S. (2008). "Calibration and validation of the Hargreaves equation for the reference evapotranspiration estimation in Gyeonggi bay watershed." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 413-422. https://doi.org/10.3741/JKWRA.2008.41.4.413
  28. Lu, J., Sun, G., McNulty, S.G., and Amatya, D.M. (2005). "A comparison of six potential evapotranspiration methods for regional use in the southwestern United States." Journal of the American Water Resources Association, AWRA, Vol. 41, pp. 621-633. https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
  29. Makkink, G.F. (1957). "Testing the Penman formula by means of lysimeters." Journal of the Institution of Water Engineers, Vol. 11, No. 3, pp. 277-288.
  30. McCabe, G.J., Hay, L.E., Bock, A., Markstrom, S.L., and Atkinson, R.D. (2015). "Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients." Journal of Hydrology, Vol. 521, pp. 389-394. https://doi.org/10.1016/j.jhydrol.2014.12.006
  31. Metcalfe, R.A., Petzold, H., Luce, J.J., and Buttle, J.M. (2019). "Evaluating seasonal and regional calibration of temperaturebased methods for estimating potential evaporation in Ontario." Canadian Water Resources Journal, Vol. 44, No. 1, pp. 2-21. https://doi.org/10.1080/07011784.2018.1493399
  32. Moon, J.W. (2018). "Analysis of reference evapotranspiration change in Korea by climate change impact." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 19, No. 7, pp. 71-81. https://doi.org/10.9798/KOSHAM.2018.18.7.71
  33. Moon, J.W., Jung, C.G., and Lee, D.R. (2013). "Parameter regionalization of Hargreaves equation based on climatological characteristics in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 9, pp. 933-946. https://doi.org/10.3741/JKWRA.2013.46.9.933
  34. Nash, J.E., and Sutcliffe, J.V. (1970) "River flow forecasting through conceptual model. part 1-A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  35. Neto, A.J.S., Júnior, J.C.F., Andrade, C.L.T., Lopes, D.C., and Nascimento, P.T. (2015). "Reference evapotranspiration estimates based on minimum meteorological variable requirements of historical weather data." Chilean Journal of Agricultural Research, Vol. 75, No. 3, pp. 366-374. https://doi.org/10.4067/S0718-58392015000400014
  36. Park, J., Cho, J., Lee, E.-J., and Jung, I. (2017). "Evaluation of reference evapotranspiration in South Korea according to CMIP5 GCMs and estimation methods." Journal of the Korean Society of Rural Planning, KSRP, Vol. 23, No. 4, pp. 153-168. https://doi.org/10.7851/Ksrp.2017.23.4.153
  37. Peng, L., Li, Y., and Feng, H. (2017). "The best alternative for estimating reference crop evapotranspiration in different subregions of mainland China." Scientific Reports, Vol. 7, No. 1 p. 5458, doi:10.1038/s41598-017-05660-y.
  38. Pereira, A.R., and Pruitt, W.O. (2004), "Adaptation of the thornthwaite scheme for estimating daily reference evapotranspiration." Agricultural Water Management, Vol. 66, pp. 251-257. https://doi.org/10.1016/j.agwat.2003.11.003
  39. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, No. 2, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  40. Racz, C., Nagy, J., and Dobos, A.C. (2013). "Comparison of several methods for calculation of reference evapotranspiration." Acta Silvatica et Lignaria Hungarica, Vol. 9, No. 1, dio: 10.2478/aslh-2013-0001.
  41. Rao, L.Y., Sun, G., Ford, C.R., and Vose, J.M. (2011). "Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians." Transactions of the ASABE, Vol. 54, No. 6, pp. 2067-2078. https://doi.org/10.13031/2013.40666
  42. Rim, C.-S. (2008). "Trends of annual and monthly FAO Penman-Monteith reference evapotranspiration." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 1B, pp. 65-77.
  43. Rim, C.-S., Yoon, S.E., Song, J.I. (2009). "Evaluation of equations for estimating pan evaporation considering regional characteristics." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 29, No. 1B, pp. 47-62.
  44. Samaras, D., Rief, A., and Theodoropoulos, K. (2014). "Evaluation of radiation-based reference evapotranspiration models under difference mediterranean climates in central Greece." Water Resources Management, Vol. 28, pp. 207-225. https://doi.org/10.1007/s11269-013-0480-3
  45. Seiller, G., and Anctil, F. (2016). "How do potential evapotranspiration formulas influence hydrological projections?" Hydrological Sciences Journal, Vol. 61, No. 12, pp. 2249-2266. https://doi.org/10.1080/02626667.2015.1100302
  46. Shahidian, S., Serralheiro, R., Serrano, J., Teixeira, J., Haie, N., and Santos, F. (2012). "Hargreaves and other reduced-set methods for calculating evapotranspiration." Evapotranspiration-Remote Sensing and Modeling, Edited by Irmak, A., InTech, Rijeka, Croatia, pp. 59-79.
  47. Sur, C., Lee, J., Park, J., and Choi, M. (2012), "Spatial estimation of Priestley-Taylor based potential evapotranspiration using MODIS imageries: The Nak-dong river basin." Korean Journal of Remote Sensing, Vol. 28, No. 5, pp. 521-529. https://doi.org/10.7780/kjrs.2012.28.5.5
  48. Tegos, A., Malamos, N., Efstratiadis, A. Tsoukalas, I., Karanasios, A., and Koutsoyiannis, D. (2017). "Parametric modelling of potential evapotranspiration: A global survey." Water, Vol. 9, No. 10, p.795, doi:10.3390/w9100795.
  49. Thornthwaite, C.W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94. https://doi.org/10.2307/210739
  50. Tomar, A.S. (2015). "Compararive performance of reference evapotranspiration equations at sub-humid Rarai region of Uttarakhand, India." International Journal of Agricultural Research, Vol. 10, No. 2, pp. 65-73. https://doi.org/10.3923/ijar.2015.65.73
  51. Valipour, M. (2015a). "Evaluation of radiation methods to study potential evapotranspiration of 31 provinces." Meteorological and Atmospheric Physics, Vol. 127, pp. 289-303. https://doi.org/10.1007/s00703-014-0351-3
  52. Valipour, M. (2015b). "Temperature analysis of reference evapotranspiration models." Meteorological Applications, Vol. 22, pp. 385-394. https://doi.org/10.1002/met.1465
  53. Xu, C.-Y., and Singh, V.P. (2002). "Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland." Water Resources Management, Vol. 16, pp. 197-219. https://doi.org/10.1023/A:1020282515975
  54. Xystrakis, F., and Matzarakis, A. (2011). "Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete in southern Greece." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 137, No. 4, pp. 211-222. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000283
  55. Yeh, H.-F. (2017). "Comparison of evapotranspiration methods under limited data." Current Perspective to Predict Actual Evapotranspiration, Edited by Bucur, D., InTech, Rijeka, Croatia, pp. 1-23.
  56. Yoon, P.R., and Choi, J.-Y. (2018). "Assessment of reference evapotranspiration equations for missing and estimated weather data." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 60, No. 3, pp. 15-25. https://doi.org/10.5389/KSAE.2018.60.3.015