DOI QR코드

DOI QR Code

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Tang, Xiaobin (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Gong, Pin (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Peng (School of Environmental and Biological Engineering, Nanjing University of Science and Technology) ;
  • Zhou, Cheng (Jiangsu Nuclear and Radiation Safety Supervision and Management Center) ;
  • Zhu, Xiaoxiang (Jiangsu Nuclear and Radiation Safety Supervision and Management Center) ;
  • Liang, Dajian (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Zeyu (Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics)
  • Received : 2019.07.02
  • Accepted : 2020.03.25
  • Published : 2020.10.25

Abstract

Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

Keywords

References

  1. S. Chen, T. Ma, F. He, Y. Liu, S. Wang, A new compact gamma camera with super resolution capability and high sensitivity for monitoring sparse radioactive sources in large area, in: 2013 IEEE Nucl. Sci. Symp. Med. Imaging Conf. (2013 NSS/MIC), IEEE, 2013, pp. 1-4.
  2. J.G. FitzGerald, A rotating scatter mask for inexpensive gamma-ray imaging in orphan source search: simulation results, IEEE Trans. Nucl. Sci. 62 (2015) 340-348. https://doi.org/10.1109/TNS.2014.2379332
  3. P. Fracas, J.P. Gayral, G. Krishnamachari, M.S. Kale, P. Chaudhury, K.S. Pradeepkumar, D.N. Sharma, R. Venkat, R.S. Deshpande, Methodologies and systems to meet the challenges of locating and recovering orphan sources: source search operation conducted by French and Indian teams in the Republic of Georgia, in: Secur. Radioact. Sources. Proc. an Int. Conf., 2003.
  4. P.T. Durrant, M. Dallimore, I.D. Jupp, D. Ramsden, The application of pinhole and coded aperture imaging in the nuclear environment, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 422 (1999) 667-671. https://doi.org/10.1016/S0168-9002(98)01014-6
  5. C.D. Ferguson, T. Kazi, J. Birira, Commercial Radioactive Sources: Surveying the Security Risks, Monterey Institute of International Studies, Center for Nonproliferation Studies Monterey, California, 2003.
  6. B.R. Kowash, A Rotating Modulation Imager for the Orphan Source Search Problem, 2008.
  7. M. Gmar, O. Gal, C. Le Goaller, O.P. Ivanov, V.N. Potapov, V.E. Stepanov, F. Laine, F. Lamadie, Development of coded-aperture imaging with a compact gamma camera, IEEE Trans. Nucl. Sci. 51 (2004) 1682-1687. https://doi.org/10.1109/TNS.2004.832608
  8. O. Gal, M. Gmar, O.P. Ivanov, F. Laine, F. Lamadie, C. Le Goaller, C. Mahe, E. Manach, V.E. Stepanov, Development of a portable gamma camera with coded aperture, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 563 (2006) 233-237. https://doi.org/10.1016/j.nima.2006.01.119
  9. F. Carrel, R.A. Khalil, S. Colas, D. de Toro, G. Ferrand, E. Gaillard-Lecanu, M. Gmar, D. Hameau, S. Jahan, F. Laine, GAMPIX: a new gamma imaging system for radiological safety and homeland security purposes, in: Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), 2011 IEEE, IEEE, 2011, pp. 4739-4744.
  10. S. Sun, Z. Zhang, L. Shuai, D. Li, Y. Wang, Y. Liu, X. Huang, H. Tang, T. Li, P. Chai, Development of a panorama coded-aperture gamma camera for radiation detection, Radiat. Meas. 77 (2015) 34-40. https://doi.org/10.1016/j.radmeas.2015.04.014
  11. D. Maier, C. Blondel, C. Delisle, O. Limousin, J. Martignac, A. Meuris, F. Visticot, G. Daniel, P.-A. Bausson, O. Gevin, others, Second generation of portable gamma camera based on Caliste CdTe hybrid technology, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 912 (2018) 338-342. https://doi.org/10.1016/j.nima.2017.12.027
  12. E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X-and gamma-ray astronomy, Space Sci. Rev. 45 (1987) 349-403. https://doi.org/10.1007/BF00171998
  13. M.J. Cieslak, K.A.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future developmenteA review, Radiat. Meas. 92 (2016) 59-71. https://doi.org/10.1016/j.radmeas.2016.08.002
  14. M. Streicher, S. Brown, Y. Zhu, D. Goodman, Z. He, Special nuclear material characterization using digital 3-D position sensitive CdZnTe detectors and high purity germanium spectrometers, IEEE Trans. Nucl. Sci. 63 (2016) 2649-2656. https://doi.org/10.1109/TNS.2016.2593631
  15. Z. He, W. Li, G.F. Knoll, D.K. Wehe, J. Berry, C.M. Stahle, 3-D position sensitive CdZnTe gamma-ray spectrometers, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 422 (1999) 173-178. https://doi.org/10.1016/S0168-9002(98)00950-4
  16. C.G. Wahl, W.R. Kaye, W. Wang, F. Zhang, J.M. Jaworski, A. King, Y.A. Boucher, Z. He, The Polaris-H imaging spectrometer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 784 (2015) 377-381. https://doi.org/10.1016/j.nima.2014.12.110
  17. D. Hellfeld, P. Barton, D. Gunter, A. Haefner, L. Mihailescu, K. Vetter, Real-time free-moving active coded mask 3D gamma-ray imaging, IEEE Trans. Nucl. Sci. 66 (2019) 2252-2260. https://doi.org/10.1109/TNS.2019.2939948
  18. R. Pavlovsky, A. Haefner, T. Joshi, V. Negut, K. McManus, E. Suzuki, R. Barnowski, K. Vetter, 3-D Radiation Mapping in Real-Time with the Localization and Mapping Platform LAMP from Unmanned Aerial Systems and Man-Portable Configurations, 2018. ArXiv Prepr. ArXiv1901.05038.
  19. P.G. Martin, S. Kwong, N.T. Smith, Y. Yamashiki, O.D. Payton, F.S. Russell- Pavier, J.S. Fardoulis, D.A. Richards, T.B. Scott, 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility, Int. J. Appl. Earth Obs. Geoinf. 52 (2016) 12-19. https://doi.org/10.1016/j.jag.2016.05.007
  20. K. Vetter, R. Barnowksi, A. Haefner, T.H.Y. Joshi, R. Pavlovsky, B.J. Quiter, Gamma-Ray imaging for nuclear security and safety: towards 3-D gamma-ray vision, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 878 (2018) 159-168. https://doi.org/10.1016/j.nima.2017.08.040
  21. E.E. Fenimore, T.M. Cannon, Coded aperture imaging with uniformly redundant arrays, Appl. Optic. 17 (1978) 337-347. https://doi.org/10.1364/AO.17.000337
  22. S.R. Gottesman, E.E. Fenimore, New family of binary arrays for coded aperture imaging, Appl. Optic. 28 (1989) 4344-4352. https://doi.org/10.1364/AO.28.004344
  23. F.J. Ballesteros, E.M. Muro, B. Luque, Speeding up image reconstruction methods in coded mask ${\gamma}$ cameras using neural networks: application to the EM algorithm, Exp. Astron. 11 (2001) 207-222. https://doi.org/10.1023/A:1013101111446
  24. F.J. Ballesteros, F.S. Martinez, V.R. Velasco, The EM imaging reconstruction method in ${\gamma}$-ray astronomy, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 145 (1998) 469-481. https://doi.org/10.1016/S0168-583X(98)00513-8
  25. S. Berrim, A. Lansiart, J.-L. Moretti, Implementing of maximum likelihood in tomographical coded aperture, in: Proc. 3rd IEEE Int. Conf. Image Process, IEEE, 1996, pp. 745-748.
  26. J. He, X. Tang, P. Gong, P. Wang, L. Wen, X. Huang, Z. Han, W. Yan, L. Gao, Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.09.032
  27. P. Olmos, J.C. Diaz, J.M. Perez, G. Garcia-Belmonte, P. Gomez, V. Rodellar, Application of neural network techniques in gamma spectroscopy, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 312 (1992) 167-173. https://doi.org/10.1016/0168-9002(92)90148-W
  28. E. Heidari, M.A. Sobati, S. Movahedirad, Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN), Chemom. Intell. Lab. Syst. 155 (2016) 73-85. https://doi.org/10.1016/j.chemolab.2016.03.031
  29. I.S. Isa, Z. Saad, S. Omar, M.K. Osman, K.A. Ahmad, H.A.M. Sakim, Suitable MLP network activation functions for breast cancer and thyroid disease detection, in: 2010 Second Int. Conf. Comput. Intell. Model. Simul, 2010, pp. 39-44.
  30. R. Zhang, P. Gong, X. Tang, P. Wang, C. Zhou, X. Zhu, L. Gao, D. Liang, Z. Wang, Reconstruction method for gamma-ray coded-aperture imaging based on convolutional neural network, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 934 (2019) 41-51. https://doi.org/10.1016/j.nima.2019.04.055
  31. A.T.C. Goh, Back-propagation neural networks for modeling complex systems, Artif. Intell. Eng. 9 (1995) 143-151. https://doi.org/10.1016/0954-1810(94)00011-S
  32. R.H. Dicke, Scatter-hole cameras for x-rays and gamma rays, Astrophys, J 153 (1968) L101. https://doi.org/10.1086/180230
  33. E. Yoshida, K. Shizuma, S. Endo, T. Oka, Application of neural networks for the analysis of gamma-ray spectra measured with a Ge spectrometer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 484 (2002) 557-563. https://doi.org/10.1016/S0168-9002(01)01962-3
  34. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436. https://doi.org/10.1038/nature14539
  35. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, others, Features of particle and heavy ion transport code system (PHITS) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684-690. https://doi.org/10.1080/00223131.2017.1419890
  36. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929-1958.

Cited by

  1. Extended sources reconstructions by means of coded mask aperture systems and deep learning algorithm vol.1012, 2020, https://doi.org/10.1016/j.nima.2021.165600
  2. A high efficiency fast-response gamma detector with mrad pointing capabilities vol.1025, 2020, https://doi.org/10.1016/j.nima.2021.166106