DOI QR코드

DOI QR Code

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad (Department of Aerospace Engineering, K.N. Toosi University of Technology) ;
  • Simyari, Mahdi (Department of Mechanical Engineering, University of Tehran) ;
  • Hosseini, Seyed A. (Department of Mechanical Engineering, University of Tehran) ;
  • Tounsi, Abdelouahed (Yonsei Frontier Lab, Yonsei University)
  • Received : 2019.09.06
  • Accepted : 2020.08.13
  • Published : 2020.10.25

Abstract

The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Keywords

References

  1. Adams, F.C. and Barbante, C. (2013), "Nanoscience, nanotechnology and spectrometry", Spectrochim. Acta Part B At. Spectrosc., 86, 3-13. https://doi.org/10.1016/j.sab.2013.04.008.
  2. Ajayan, P.M. (1999), "Nanotubes from carbon", Chem. Rev., 99(7), 1787-1800. https://doi.org/10.1021/cr970102g.
  3. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  4. Alizadeh Hamidi, B., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Therm. Stress., 43(2), 157-174. https://doi.org/10.1080/01495739.2019.1666694.
  5. Askari, H. and Esmailzadeh, E. (2017), "Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations", Compos. Part B Eng., 113, 31-43. https://doi.org/10.1016/j.compositesb.2016.12.046.
  6. Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E Low Dimens. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007.
  7. Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
  8. Aydogdu, M. (2015), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects", J. Vib. Control., 21(16), 3132-3154. https://doi.org/10.1177/1077546313518954.
  9. Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006.
  10. Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 66(4), 417-437. https://doi.org/10.24425/ame.2019.131355.
  11. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. http://dx.doi.org/10.12989/anr.2018.6.3.279.
  12. Bethune, D., Kiang, C.H., De Vries, M., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R. (1993), "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature, 363(6430), 605-607. https://doi.org/10.1038/363605a0.
  13. Bianco, A., Kostarelos, K., Partidos, C.D. and Prato, M. (2005), "Biomedical applications of functionalised carbon nanotubes", Chem. Commun., 1(5), 571-577. https://doi.org/10.1039/B410943K.
  14. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. http://dx.doi.org/10.12989/anr.2019.7.3.191.
  15. Caruthers, S.D., Wickline, S.A. and Lanza, G.M. (2007), "Nanotechnological applications in medicine", Curr. Opin. Biotechnol., 18(1), 26-30. https://doi.org/10.1016/j.copbio.2007.01.006.
  16. Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, B., Kavalieros, J., Majumdar, A., Metz, M. and Radosavljevic, M. (2005), "Benchmarking nanotechnology for high-performance and lowpower logic transistor applications", IEEE Trans. Nanotechnol., 4(2), 153-158. https://doi.org/10.1109/TNANO.2004.842073.
  17. Cox, B.J., Thamwattana, N. and Hill, J.M. (2008), "Mechanics of nanotubes oscillating in carbon nanotube bundles", Proc. Math. Phys. Eng. Sci., 464(2091), 691-710. https://doi.org/10.1098/rspa.2007.0247.
  18. Dai, H. (2002), "Carbon nanotubes: Opportunities and challenges", Surf. Sci., 500(1-3), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8.
  19. Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.
  20. De Volder, M.F., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: Present and future commercial applications", Science, 339(6119), 535-539. https://doi.org/10.1126/science.1222453.
  21. Diallo, M., Street, A., Sustich, R., Duncan, J. and Savage, N. (2009), Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, William Andrew, New York, USA.
  22. Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., Int. J., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
  23. Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  25. Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  26. Georgantzinos, S. and Anifantis, N. (2010), "Carbon nanotube-based resonant nanomechanical sensors: A computational investigation of their behavior", Physica E Low Dimens. Syst. Nanostruct., 42(5), 1795-1801. https://doi.org/10.1016/j.physe.2010.02.002.
  27. Glory, J., Bonetti, M., Helezen, M., Mayne-L'Hermite, M. and Reynaud, C. (2008), "Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes", J. Appl. Phys., 103(9), 094309. https://doi.org/10.1063/1.2908229.
  28. Gooding, J.J. (2005), "Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochim. Acta, 50(15), 3049-3060. https://doi.org/10.1016/j.electacta.2004.08.052.
  29. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.
  30. Harris, P.J. and Harris, P.J.F. (2009), Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, London, UK.
  31. He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P. and Pham-Huy, C. (2013), "Carbon nanotubes: Applications in pharmacy and medicine", BioMed Res. Int., 2013, 578290. https://doi.org/10.1155/2013/578290.
  32. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., Int. J., 8(1), 25-36. https://doi.org/10.12989/anr.2020.8.1.025.
  33. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2019), "Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control, 26(11-12), 913-928. https://doi.org/10.1177/1077546319890170.
  34. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118.
  35. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  36. Iost, R.M. and Crespilho, F.N. (2012), "Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics", Biosens. Bioelectron., 31(1), 1-10. https://doi.org/10.1016/j.bios.2011.10.040.
  37. Joshi, M., Bhattacharyya, A. and Ali, S.W. (2008), "Characterization techniques for nanotechnology applications in textiles", Indian J. Fibre Text. Res., 33(3), 304-317.
  38. Karaoglu, P. and Aydogdu, M. (2010), "On the forced vibration of carbon nanotubes via a non-local Euler-Bernoulli beam model", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 224(2), 497-503. https://doi.org/10.1243/09544062JMES1707.
  39. Karlicic, D.Z., Ayed, S. and Flaieh, E. (2019), "Nonlocal axial vibration of the multiple Bishop nanorod system", Math. Mech. Solids., 24(6), 1668-1691. https://doi.org/10.1177/1081286518766577.
  40. Katariya, P.V. and Panda, S.K. (2019a), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  41. Katariya, P.V. and Panda, S.K. (2019b), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
  42. Katariya, P.V. and Panda, S.K. (2019c), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., Int. J., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  43. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 21(8), 2846-2869. https://doi.org/10.1177/1099636217728420.
  44. Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure-using FEM", Proceedings of the 7th National Conference on Processing and Characterization of Materials, Roukela, India, December.
  45. Kelly, B. (1981), Physics of Graphite, Applied Science, London, UK.
  46. Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct. Mach., 2020, 1-24. https://doi.org/10.1080/15397734.2020.1744001.
  47. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020a), "On torsional vibrations of triangular nanowire", Thin-Wall. Struct., 148, 106591. https://doi.org/10.1016/j.tws.2019.106591.
  48. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020b), "Torsional Vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: comparison with hollow elliptical cross section", Eur. Phys. J. Plus., 135(3), 1-20. https://doi.org/10.1140/epjp/s13360-020-00312-z.
  49. Khosravi, F., Hosseini, S.A. and Hayati, H. (2020c), "Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory", Int. J. Mod. Phys. B, 34(8), 2050067. https://doi.org/10.1142/S0217979220500678.
  50. Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020d), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 234(10), 1928-1942. https://doi.org/10.1177/0954406220903341.
  51. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020e), "Forced axial vibration of a single-walled carbon nanotube embedded in elastic medium under various moving forces", J. Nano Res., 63, 112-133. https://doi.org/10.4028/www.scientific.net/JNanoR.63.112.
  52. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020f), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  53. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., Int. J., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.
  54. Lei, Z., Liew, K. and Yu, J. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panels", Int. J. Mater. Sci., 1(1), 36-40. https://doi.org/0.12720/ijmse.1.1.36-40.
  55. Li, C., Lim, C.W. and Yu, J. (2010), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20(1), 015023. https://doi.org/10.1088/0964-1726/20/1/015023.
  56. Liu, K.C., Friend, J. and Yeo, L. (2009), "The axial-torsional vibration of pretwisted beams", J. Sound Vib., 321(1-2), 115-136. https://doi.org/10.1016/j.jsv.2008.09.016.
  57. Makar, J. and Beaudoin, J. (2004), "Carbon nanotubes and their application in the construction industry", Proceedings of the 1st International Symposium on Nanotechnology in Construction, Paisley, Scotland, June.
  58. Mehar, K. and Panda, S.K. (2018a), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  59. Mehar, K. and Panda, S.K. (2018b), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  60. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.
  61. Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  62. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  63. Mehar, K., Panda, S.K. and Patle, B.K. (2017b), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  64. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  65. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  66. Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  67. Mehralian, F. and Beni, Y.T. (2017), "A nonlocal strain gradient shell model for free vibration analysis of functionally graded shear deformable nanotubes", Int. J. Eng. Appl. Sci., 9(2), 88-102. http://dx.doi.org/10.24107/ijeas.309818.
  68. Miyako, E., Hosokawa, C., Kojima, M., Yudasaka, M., Funahashi, R., Oishi, I., Hagihara, Y., Shichiri, M., Takashima, M. and Nishio, K. (2011), "A photo-thermal-electrical converter based on carbon nanotubes for bioelectronic applications", Angew. Chem. Int. Ed., 50(51), 12266-12270. https://doi.org/10.1002/anie.201106136.
  69. Mohammadian, M., Abolbashari, M.H. and Hosseini, S.M. (2019), "Axial vibration of hetero-junction CNTs mass nanosensors by considering the effects of small scale and connecting region: An analytical solution", Physica B Condens. Matter., 553, 137-150. https://doi.org/10.1016/j.physb.2018.10.044.
  70. Natsuki, T., Matsuyama, N., Shi, J.X. and Ni, Q.Q. (2014), "Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads", Appl. Phys. A, 116(3), 1001-1007. https://doi.org/10.1007/s00339-014-8289-3.
  71. Oveissi, S., Toghraie, D. and Eftekhari, S.A. (2016), "Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid", Physica E Low Dimens. Syst. Nanostruct., 83, 275-283. https://doi.org/10.1016/j.physe.2016.05.004.
  72. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1016/j.physe.2016.05.004.
  73. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., Int. J., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  74. Paradise, M. and Goswami, T. (2007), "Carbon nanotubes-production and industrial applications", Mater. Des., 28(5), 1477-1489. https://doi.org/10.1016/j.matdes.2006.03.008.
  75. Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2017), "Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties", Appl. Phys. A, 123(1), 4. https://doi.org/10.1007/s00339-016-0591-9.
  76. Shen, H.S. and Zhu, Z. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", Eur. J. Mech. A Solids, 35, 10-21. https://doi.org/10.1016/j.euromechsol.2012.01.005.
  77. Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009.
  78. Sherigara, B.S., Kutner, W. and D'Souza, F. (2003), "Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes", Electroanalysis, 15(9), 753-772. https://doi.org/10.1002/elan.200390094.
  79. Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017.
  80. Sinha, N. and Yeow, J.W. (2005), "Carbon nanotubes for biomedical applications", IEEE Trans. Nanobiosci., 4(2), 180-195. https://doi.org/10.1109/TNB.2005.850478.
  81. Suehiro, J., Zhou, G. and Hara, M. (2003), "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy", J. Phys. D Appl. Phys., 36(21), 109. https://doi.org/10.1088/0022-3727/36/21/L01.
  82. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G. and Rinzler, A.G. (1996), "Crystalline ropes of metallic carbon nanotubes", Science, 273(5274), 483-487. https://doi.org/10.1126/science.273.5274.483.
  83. Wang, C., Lv, R., Kang, F., Gu, J., Gui, X. and Wu, D. (2009), "Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles", J. Magn. Magn. Mater., 321(13), 1924-1927. https://doi.org/10.1016/j.jmmm.2008.12.013.
  84. Wang, Q. and Liew, K. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.
  85. Yumura, M. (2003), "Carbon nanotube industrial applications", AIST Today, 10, 8-9.
  86. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017a), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluid. Nanofluidics, 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3.
  87. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017b), "Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nanoshells", Eur. Phys. J. Plus, 132(12), 503. https://doi.org/10.1140/epjp/i2017-11770-7.

Cited by

  1. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  2. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281