DOI QR코드

DOI QR Code

Distribution of Foodborne Pathogens from Garlic Chives and Its Production Environments in the Southern Part of Korea

남부지방 부추와 재배환경의 식품매개병원균의 분포

  • Jung, Jieun (Microbial Safety Team, Agro-food Safety & Crop Protection Department, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA)) ;
  • Oh, Kwang Kyo (Microbial Safety Team, Agro-food Safety & Crop Protection Department, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA)) ;
  • Seo, Seung-Mi (Microbial Safety Team, Agro-food Safety & Crop Protection Department, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA)) ;
  • Yang, SuIn (Microbial Safety Team, Agro-food Safety & Crop Protection Department, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA)) ;
  • Jung, Kyu-Seok (Gyeonggi-do Agricultural Research & Extension Services) ;
  • Roh, Eunjung (Crop protection Division, Department of Agro-food safety and Crop protection, National Institute of Agriculture Sciences (NAS), Rural Development Administration) ;
  • Ryu, Jae-Gee (Microbial Safety Team, Agro-food Safety & Crop Protection Department, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA))
  • 정지은 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 오광교 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 서승미 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 양수인 (국립농업과학원 농산물안전성부 유해생물팀) ;
  • 정규석 (경기도농업기술원) ;
  • 노은정 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 류재기 (국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2020.09.21
  • Accepted : 2020.10.19
  • Published : 2020.10.30

Abstract

Recently, foodborne illness outbreaks linked to fresh produce are being increasingly reported in the United States, the EU, and Korea as well. Some of this increase may be due to improved surveillance, increase in consumption, change in consumers' habits, and complex distribution systems. Garlic chive is a green, fresh-cut vegetable consumed year-round as a nutrition-rich herb in Korea. It is also prone to contamination with foodborne pathogens during pre-harvest, as amendment with high amounts of livestock manure or compost to soil is required in its cultivation. Our aim in this study was to evaluate microbial contamination of garlic chives, garlic chives cultivation soil, compost, and irrigation water in the southern part of Korea. Samples were collected in A, B, and C regions in 2019 and 2020, and 69, 72, 27, and 40 of garlic chives, soil, compost, and irrigated water, respectively, were analyzed for the presence of sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), Bacillus cereus, Staphylococcus aureus, pathogenic E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. In A, B, and C regions, levels of total aerobic bacteria, coliform, B. cereus, and S. aureus on all samples were between 1.14 and 8.83 log CFU/g, 0.43 and 5.01 log CFU/g, 0.41 and 5.55 log CFU/g, and 1.81 and 6.27 log CFU/g, respectively. B. cereus isolated from garlic chives and environmental samples showed β-hemolysis activity. Incidence of S. aureus in garlic chive and its production environments in 2020 was different from 2019. In this study, B. cereus and S. aureus were the only pathogenic microorganisms detected in all samples. As a result, this work suggests that continuous monitoring in the production and pre-harvest environment is required to improve hthe hygiene and safety of garlic chive.

본 연구는 남부 3지역에서 시설재배 3농가 총 9농가를 선정하여 2019년과 2020년도 재배 중인 부추와 부추 재배 토양, 퇴비, 농업용수의 미생물 오염도를 조사하였다. 부추, 토양, 퇴비, 농업용수에서 위생지표세균(일반세균수, 대장균군, 대장균)과 B. cereus, S. aureus를 조사하였다. 2019년 채취해 온 시료의 오염도를 조사한 결과 A지역 일반세균수는 6.15-8.82 log CFU/g, 대장균군은 2.75-4.88 log CFU/g, 21.58-37.95 MPN/100 mL, B. cereus는 1.79-5.86 log CFU/g으로 검출되었다. B지역 일반세균수는 6.41-8.44 log CFU/g, 대장균군은 1.57-2.82 log CFU/g, B. cereus는 2.48-6.00 log CFU/g으로 검출되었다. C지역 일반세균수는 6.42-7.74 log CFU/g, 대장균군은 2.39-5.73 log CFU/g, 14.45-2419.6 MPN/100 mL, B. cereus는 1.48-5.56 log CFU/g으로 검출되었다. C지역 III농가 토양에서 대장균이 1.86 log CFU/g으로 검출되었다. 2020년 채취해온 시료의 오염도를 조사한 결과 A지역 일반세균수는 2.83-8.20 log CFU/g, 대장균군은 0.28-4.03 log CFU/g, B. cereus는 0.41-5.30 log CFU/g, S. aureus는 0.40-4.85 log CFU/g이 검출되었다. B지역 일반세균수는 0.84-7.25 log CFU/g, 대장균군은 3.13-3.56 log CFU/g, B. cereus는 1.69-2.82 log CFU/g, S. aureus는 2.44-3.78 log CFU/g이 검출되었다. C지역 일반세균수는 2.04-8.83 log CFU/g, 대장균군은 0.43-4.04 log CFU/g, B. cereus는 0.70-4.93 log CFU/g, S. aureus는 1.81-6.27 log CFU/g이 검출되었다. 부추는 토양과 퇴비로부터의 오염, 농업용수로부터의 오염, 농업용수로 오염된 토양과 퇴비로의 오염 등 다양한 경로를 통해 B. cereus가 오염될 수 있다. β-hemolysis 활성을 지니는 B. cereus가 부추와 재배환경시료로부터 분리되었기에 B. cereus의 오염 예방이 중요하다. 반면에 병원성 E. coli, E. coli O157:H7, L. monocytogenes, Salmonella spp.은 검출되지 않았다. B. cereus와 S. aureus의 오염을 줄이기 위해 농작물 재배 시 작물과 토양과 퇴비의 접촉을 최소화하기 위해 멀칭 재배와 농업용수의 관리, 사용 후 퇴비 관리 등 재배 환경을 관리하는 것이 미생물 오염도를 줄이는데 효과적일 것으로 판단된다. 또한 농산물로 인한 식중독 사고를 예방하기 위해 작물과 재배환경의 모니터링 연구와 작업자의 위생 관리에 대한 지속적인 연구가 필요하다.

Keywords

References

  1. Rural Development Administration (RDA), 2018. Chives, second ed. Jeonju-si, Jeollabuk-do, Korea, pp.16-17, 68-107.
  2. An, J.M., Kim, I.R., Kim, M.G., Chang, S.Y., Lim, H.J., Park, J.O., Hwang, H.R., Park, D.H., Lee, G.H., Residual characteristic of fungicide tebuconazole in Chinese chives (Alliu, tuberosum R.) under greenhouse condition. Korean J. Pestic. Sci., 23, 220-230 (2019). https://doi.org/10.7585/kjps.2019.23.3.220
  3. Kim, S.H., Lee, K.I., Heo, S.Y., Lee, W.J., 2019. Research on fresh-cut fruits and vegetables. Naju-si, Jeollanam-do, Korea, pp. 3-12.
  4. Ministry of Food and Drug Safety, (2020, May 25). Enforcement of summer food poisoning prevention plan. Retrieved from https://www.mfds.go.kr/brd/m_99/view.do?seq=43619
  5. Jo, M.J., Jeong, A.R., Kim, H.J., Lee, N., Oh, S.W., Kim, Y.J., Chun, H.S., Koo, M, Microbiological quality of freshcut produce and organic vegetables. Korean J. Food Sci. Technol., 43, 91-97 (2011). https://doi.org/10.9721/KJFST.2011.43.1.091
  6. Bae, Y.M., Hong, Y.J., Kang, D.H., Heu, S., Lee, S.Y., Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J. Food Sci. Technol., 43, 161-168 (2011). https://doi.org/10.9721/KJFST.2011.43.2.161
  7. Food and Drug Administraion, (2020, August 13). Outbreaks of foodborne illness. Retrieved from https://www.fda.gov/food/recalls-outbreaks-emergencies/outbreaks-foodborneillness#investigations
  8. Centers for Disease Control and Prevention, (2020, August 31). Foodborne outbreaks. Retrivedf from https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html
  9. Yang, S., Seo, S.M., Roh, E., Ryu, J.G., Ryu, K.Y., Jung, K.S., Evaluation of microbial contamination in leek and leek cultivated soil in Korea. J. Food Hyg. Saf., 34, 534-541 (2019). https://doi.org/10.13103/JFHS.2019.34.6.534
  10. Mritunjay, S.K., Kumar, V., Fresh farm produce as a source of pathogens: a review. Res. J. Environ. Toxicol., 9, 59-70 (2015) https://doi.org/10.3923/rjet.2015.59.70
  11. Park, S.G., Choi, Y.D., Lee, C.W., Jeong, M.J., Kim, J.S., Chung, D.H., Shim, W.B., Investigation of microbiological hazard from Korean leeks and cultivation area to establish the GAP model. J. Food Hyg. Saf., 30, 28-34 (2015). https://doi.org/10.13103/JFHS.2015.30.1.28
  12. Ministry of Food and Drug Safety, (2020, August 13). Food Code. Retrieved from https://www.foodsafetykorea.go.kr/foodcode/01_02.jsp?idx=263
  13. Hung, N.B., Yuu, B., Kim, W.I., Jung, G., Lee, T., Roh, E., Kim, H.J., Lee, S., Kim, S.R., Analysis of the microbial contamination levels in dried red pepper during production. Korean J. Food Reserv., 25, 279-287 (2018). https://doi.org/10.11002/kjfp.2018.25.2.279
  14. Hwang, J.Y., Park, J.H., Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-toeat foods. J. Dairy Sci., 98, 1652-1660 (2015). https://doi.org/10.3168/jds.2014-9042
  15. Forsythe, S.J., 2000. The microbiology of safe food, first ed. Malden, MA, USA, pp. 78, 194.
  16. World Health Organization, 2007. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues, Geneva, Switzerland, pp. 27.
  17. Centre for Food Safety Food and Envrionmental Hgiene Department, 2014. Microbiologiclal guidelines for food for ready-to-eat food in general and specific food items, Queensway, Hong Kong, pp. 3-8.
  18. Seol, H.R., park, H.S., Park, K.H., Park, A.K., Ryu, K., Microbiological evaluation of foods and kitchen environments in childcare center and kindergarten foodservice operations. J. Korean Soc, Food Sci. Nutr., 38, 252-260 (2009). https://doi.org/10.3746/jkfn.2009.38.2.252
  19. A. Mendez-Vilas, 2010. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Badajoz, Spain, pp.1175-1181.
  20. European Food Safety Authority, Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. The EFSA Journal, 175, 1-48 (2005).
  21. Park, K.M., Jeong, M., Park, K.J., Koo, M., Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus isolated from raw vegetables in Korea. J. Food Prot., 81, 1590-1597 (2018). https://doi.org/10.4315/0362-028X.JFP-18-205
  22. Kim, W.I., Gwak, M.G., Jo, A.R., Ryu, S.D., Kim, S.R., Ryu, S.H., Kim, H.Y., Ryu, J.G., Investigation of microbiological safety of on-farm produce in Korea. J. Food Hyg. Saf., 32, 20-26 (2017). https://doi.org/10.13103/JFHS.2017.32.1.20
  23. Ministry of Food and Drug Safety, (2020, August 13). Food Code, standards by food type. Retrieved from https://www.foodsafetykorea.go.kr/foodcode/03_02.jsp?idx=63
  24. Health Protection Agency, 2009. Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. London, United Kingdom, pp. 1-33.
  25. European Food Safety Authority, Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. The EFSA J., 14, 1-93 (2016).
  26. Gil, M.I., Selma, M.V., Suslow, T., Jacxsens, L., Uyttendaele, M., Allende, A., Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr., 55, 453-468 (2015). https://doi.org/10.1080/10408398.2012.657808
  27. Kim, S.R., Lee, J.Y., Lee, S.H., Kim, W.I., Park, K.H., Yun, H.J., Kim, B.S., Chung, D.H., Yun, J.C., Ryu, K.Y., Evaluation of microbiological safety of lettuce and cultivation area. J. Food Hyg. Saf., 26, 289-295 (2011).
  28. Burnett, S.L., Beuchat, L.R., Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J. Ind. Microbiol. Biot., 27, 104-110 (2001). https://doi.org/10.1038/sj.jim.7000199
  29. Beecher, D.J., Wong, A.C.L., Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbiol., 60, 1646-1651 (1994). https://doi.org/10.1128/AEM.60.5.1646-1651.1994
  30. Oh, S.Y., Nam, K.Y., Yoon, D.H., Analysis of pathogenic microorganism's contamination and heavy metals on kimchi cabbage by cultivation methods in Korea. J. Food Hyg. Saf., 32, 500-506 (2017). https://doi.org/10.13103/JFHS.2017.32.6.500
  31. Yeni, F., Yavas, S., Alpas, H., Soyer, Y., Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit. Rev. Food Sci. Nutr., 56, 1532-1544 (2016). https://doi.org/10.1080/10408398.2013.777021