DOI QR코드

DOI QR Code

Morphological and Genetic Species Identification in the Chironomus Larvae (Diptera: Chironomidae) Found in Domestic Tap Water Purification Plants

국내 수돗물 정수장에서 발견된 깔따구 유충(파리목: 깔따구과)의 유전적-형태적 종 동정 연구

  • Kwak, Ihn-Sil (Fisheries Science Institute, Chonnam National University) ;
  • Park, Jae-Won (Department of Ocean Integrated Science, Chonnam National University) ;
  • Kim, Won-Seok (Department of Ocean Integrated Science, Chonnam National University) ;
  • Park, Kiyun (Fisheries Science Institute, Chonnam National University)
  • Received : 2020.08.03
  • Accepted : 2020.09.02
  • Published : 2020.09.30

Abstract

The Chironomus(Diptera: Chironomidae) is a freshwater benthic invertebrate that is an important indicator organism used for environmental pollution and water quality monitoring. In this study, we performed morphological classification and genetic species identification using the cytochrome c oxidase subunit I (COI) gene on mitochondrial DNA for an accurate species classification of Chironomus larvae found in tap water purification plants in Incheon, Korea. Twenty larvae in six water purification plants consist of four species, including twelve Chironomus kiiensis, six Chironomus flaviplumus, one Chironomus dorsalis, and one Polypedilum yongsanensis (not included Genus Chironomus). Morphological characteristics of each larvae were identified based on the head capsule, the mentum, the mandible, the antenna, and the claw. Based on the COI sequences of 21 individuals of 17 Chironomus species registered in NCBI Genbank, phylogenetic analysis indicated that the 20 individuals investigated in this study consist of the same clade with corresponding species of the high homology (99~100%) including C. kiiensis, C. flaviplumus, C. dorsalis, and P. yongsanensis. These results will be used as main classification indicator for monitoring freshwater ecosystems by providing integrated morphological and genetic information for the species identification of Korean Chironomus.

깔따구(Diptera: Chironomidae)는 저서성 대형무척추동물로 환경오염 및 수질 모니터링에 이용되는 중요한 지표생물이다. 본 연구에서는 인천 수돗물 정수장에서 발견된 깔따구류의 정밀한 종 동정을 위해 형태적 분류와 미토콘드리아 DNA에서 cytochrome c oxidase subunit I (COI) 유전자의 염기서열을 이용하여 분석하였다. 정수장 6곳의 20개체는 안개무늬날개깔따구(Chironomus kiiensis) 12개체, 노랑털깔따구(Chironomus flaviplumus) 6개체, 등깔따구(Chironomus dorsalis) 1개체, 용산무늬깔따구(Polypedilum yongsanensis) 1개체 등 4종으로 확인되었다. 각 깔따구 종의 형태적 특징은 두부, 하순기절, 대악, 안테나, 발톱의 형태적 특징을 살펴보았다. NCBI Genbank에 등록된 깔따구 17종 21개체의 COI 염기서열을 바탕으로 본 연구에서 조사된 20개체의 계통진화적 분석한 결과 각 4종의 깔따구 COI 염기서열은 등록된 동인 종과 높은 상동성을 보이며 (99~100%) 같은 계통군(clade)으로 나타났다. 이러한 결과는 국내 깔따구의 종 동정을 위한 형태적- 유전적 정보를 통합적으로 제공함으로 담수생태계의 모니터링을 위한 주요한 정보로 활용될 것이다.

Keywords

References

  1. Allgeier, S., A. Kastel and C.A. Bruhl. 2019. Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: reduced chironomid abundances in mesocosm, semi-field and field studies. Ecotoxicology Environmentak Safety 169: 786-796. https://doi.org/10.1016/j.ecoenv.2018.11.050
  2. Anderson, R.L. 1980. Chironomidae toxicity tests - biological background and procedures. In: Buikema, A.L. Jr and J. Jr Cairns (eds.), Aquatic invertebrate bioassays, ASTM STP 715. American Society for Testing and Materials, PA, pp. 70-80.
  3. Armitage, P.D., L.C. Pinder and P. Cranston. 1995. The Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Netherlands.
  4. Failla, A.J., A.A. Vasquez, P. Hudson, M. Fujimoto and J.L. Ram. 2016. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae). Bulletin of Entomological Research 106: 34-46. https://doi.org/10.1017/S0007485315000486
  5. Hajibabaei, M., T.M. Porter, M. Wright and J. Rudar. 2019. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One 14: e0220953. https://doi.org/10.1371/journal.pone.0220953
  6. Kim, S., K.H. Song, H.I. Ree and W. Kim. 2012. A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap. Molecular Cell 33: 9-17. https://doi.org/10.1007/s10059-012-2151-2
  7. Kwak, I.S. 2015. Introduction to the Chironomidae as a water pollution indicator. Chonnam National University Press, pp. 13-156.
  8. Mantilla, J.G., L. Gomes and M.A. Cristancho. 2018. The differential expression of Chironomus spp genes as useful tools in the search for pollution biomarkers in freshwater ecosystems. Briefings in Functional Genomics 17: 151-156. https://doi.org/10.1093/bfgp/elx021
  9. Park, K. and I.S. Kwak. 2020. Cadmium-induced developmental alteration and upregulation of serine-type endopeptidase transcripts in wild freshwater populations of Chironomus plumosus. Ecotoxicology Environmental Safety 192: 110240. https://doi.org/10.1016/j.ecoenv.2020.110240
  10. Planello, R., O. Herrero, P. Garcia, E.M. Beltran, L. Llorente and P. Sanchez-Arguello. Developmental/reproductive effects and gene expression variations in Chironomus riparius after exposure to reclaimed water and its fortification with carbamazepine and triclosan. Water Research 178: 115790. https://doi.org/10.1016/j.watres.2020.115790
  11. Schaller, J. 2014. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere 107: 336-343. https://doi.org/10.1016/j.chemosphere.2013.12.086
  12. The entomological society of Korea, 1994. Korea Insect Collection. Konkuk University Press.
  13. Tautz, D., P. Arctander, A. Minelli, R.H. Thomas and A.P. Vogler. 2002. DNA points the way ahead in taxonomy. Nature 418: 479-479.
  14. Zhang, L., J. Yang, H. Li, J. You, N. Chatterjee and X. Zhang. 2020. Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus. Chemosphere 244: 125541. https://doi.org/10.1016/j.chemosphere.2019.125541