DOI QR코드

DOI QR Code

Experimental Study on Soft Ground with DCM Column

DCM 타설 지반에 관한 실내모형실험

  • Hong, Gigwon (Institute of Technology Research and Development, Korea Engineering & Construction)
  • Received : 2020.09.12
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

This study described the result of laboratory model tests, in order to compare the improvement effect of the DCM column installed on the soft ground according to DCM column type. In the laboratory model test, the non-reinforced type and the 3 types of DCM column were applied, and the behavior (settlement, lateral flow) of soft ground was evaluated under the surcharge load condition for each type. The settlement evaluation result showed that the settlement of soft ground without DCM column occurred rapidly under the low load condition, but the settlement of the soft ground with the DCM column had relatively small settlement. The evaluation result of lateral flow in the soft ground showed that the soft ground with DCM column had lower lateral displacement than the soft ground without DCM column. Especially, the lateral displacement under the same load condition decreased in the order of pile type, wall type, and grid type. Therefore, it confirmed that the improvement effect of soft ground was excellent when the DCM of grid type was applied for settlement and lateral flow.

본 연구에서는 연약지반에 설치된 DCM 개량체의 개량효과를 개량형식에 따라 정량적으로 비교하기 위하여 일련의 실내모형 실험을 수행하였다. 즉, 무보강 및 3종류의 DCM 개량체 형식에 대한 상재하중 재하에 따른 지반 거동을 재현하고, 지반의 침하량 및 측방변위량을 분석함으로써 DCM 개량형식에 따른 연약지반의 거동을 평가하였다. 먼저, 모형지반에 대한 성토하중 재하시험 결과 무보강의 경우에는 작은 하중 증가에도 침하가 급격히 발생한 반면에, DCM 개량체가 적용된 경우에는 상대적으로 적은 침하가 발생하였다. 그리고 상재하중 증가에 따른 지반의 측방유동 거동을 분석한 결과, 무보강의 경우에는 작은 하중 증가에도 불구하고 측방변위가 크게 발생되었다. 그러나 DCM 개량체가 적용된 경우에는 상대적으로 적은 측방유동이 발생되었으며, 동일한 하중조건에 대한 측방유동 발생량의 크기는 말뚝식, 벽식, 격자식의 순으로 나타남을 확인하였다. 따라서 격자식 DCM 개량체가 적용된 경우가 측방유동에 대하여 우수한 지반개량효과를 나타낸 것으로 평가되었다.

Keywords

References

  1. Ahn, J. P. and Hong W. P. (1994), "A study on the behavior of deformation in soft soils subjected to lateral flow", Journal of the Korean Geotechnical Society, Vol.10, no.2, pp.25-40.
  2. Hong W. P., Song, Y. S., and Cho, Y. R. (2001a), "Evaluation for Lateral Movements of Bridge Abutment on Soft Ground", Journal of the Korean Geotechnical Society, Vol.17, no.4, pp.269-278.
  3. Hong W. P., Song, Y. S., Shin, D. S., and Son, K. M. (2001b), "Stability of Bridge Abutments on Soft Ground Undergoing Lateral Flow", Journal of the Korean Geotechnical Society, Vol.17, no.4, pp.199-208.
  4. Leroueil, S., Magnan J.P., and Tavenas, F. (1990), "Embankments on soft clays", Ellis Horwood.
  5. Matsuo, M. and Kawamura, K. (1977), "Diagram for construction control of embankment on soft ground", Soils and Foundations, Vol.17, No.3, pp.37-52. https://doi.org/10.3208/sandf1972.17.3_37
  6. Sekiguchi, H. and Shibata, T. (1982), "Problems on numerical analyses of lateral flow of foundations under embankment construction", Tsuchi-to-Kiso, JSSMFE, Vol. 30, No. 5, pp. 47-54 (in Japanese).
  7. Teparaksa, W. (1994), "Newly developed toe-grouted bored piles in soft Bangkok clay: performance and behavior", Proc. of the Intl. Conf. on Design and Construction of Deep Foundation, FHWA, Orlando, USA, pp.1337-1351.
  8. Tominaga and Hashimoto (1974), "On the Embankment Control Through the Field Measurement of Lateral Movements", The Japanese Geotechnical Society, No.830, pp.43-51.
  9. Tschebotarioff, G. P. (1973), "Foundations, retaining and earth structures", McGraw-Hill Kogakusha, Ltd., pp.400-410.

Cited by

  1. DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰 vol.19, pp.4, 2020, https://doi.org/10.12814/jkgss.2020.19.4.075
  2. Evaluation of Discharging Surplus Soils for Relative Stirred Deep Mixing Methods by MPS-CAE Analysis vol.14, pp.1, 2020, https://doi.org/10.3390/su14010058