DOI QR코드

DOI QR Code

Single-Base Genome Editing in Corynebacterium glutamicum with the Help of Negative Selection by Target-Mismatched CRISPR/Cpf1

  • Kim, Hyun Ju (Department of Systems Biotechnology, Chung-Ang University) ;
  • Oh, Se Young (Department of Systems Biotechnology, Chung-Ang University) ;
  • Lee, Sang Jun (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2020.06.23
  • Accepted : 2020.08.10
  • Published : 2020.10.28

Abstract

CRISPR/Cpf1 has emerged as a new CRISPR-based genome editing tool because, in comparison with CRIPSR/Cas9, it has a different T-rich PAM sequence to expand the target DNA sequence. Single-base editing in the microbial genome can be facilitated by oligonucleotide-directed mutagenesis (ODM) followed by negative selection with the CRISPR/Cpf1 system. However, single point mutations aided by Cpf1 negative selection have been rarely reported in Corynebacterium glutamicum. This study aimed to introduce an amber stop codon in crtEb encoding lycopene hydratase, through ODM and Cpf1-mediated negative selection; deficiency of this enzyme causes pink coloration due to lycopene accumulation in C. glutamicum. Consequently, on using double-, triple-, and quadruple-base-mutagenic oligonucleotides, 91.5-95.3% pink cells were obtained among the total live C. glutamicum cells. However, among the negatively selected live cells, 0.6% pink cells were obtained using single-base-mutagenic oligonucleotides, indicating that very few single-base mutations were introduced, possibly owing to mismatch tolerance. This led to the consideration of various target-mismatched crRNAs to prevent the death of single-base-edited cells. Consequently, we obtained 99.7% pink colonies after CRISPR/Cpf1-mediated negative selection using an appropriate single-mismatched crRNA. Furthermore, Sanger sequencing revealed that single-base mutations were successfully edited in the 99.7% of pink cells, while only two of nine among 0.6% of pink cells were correctly edited. The results indicate that the target-mismatched Cpf1 negative selection can assist in efficient and accurate single-base genome editing methods in C. glutamicum.

Keywords

References

  1. Keilhauer C, Eggeling L, Sahm H. 1993. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvNilvC operon. J. Bacteriol. 175: 5595-5603. https://doi.org/10.1128/JB.175.17.5595-5603.1993
  2. Georgi T, Rittmann D, Wendisch VF. 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab. Eng. 7: 291-301. https://doi.org/10.1016/j.ymben.2005.05.001
  3. Kinoshita S, Udaka S, Shimono M. 2004. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 50: 331-343.
  4. Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. J. Microbiol. Biotechnol. 26: 807-822. https://doi.org/10.4014/jmb.1601.01053
  5. Becker J, Giesselmann G, Hoffmann SL, Wittmann C. 2018. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv. Biochem. Eng. Biotechnol. 162: 217-263.
  6. Ruan Y, Zhu L, Li Q. 2015. Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity. Biotechnol. Lett. 37: 2445-2452. https://doi.org/10.1007/s10529-015-1934-x
  7. Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
  8. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. https://doi.org/10.1126/science.1138140
  9. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60: 174-182. https://doi.org/10.1007/s00239-004-0046-3
  10. Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. 2018. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genet. Res. Int. 2018: 3797214. https://doi.org/10.1155/2018/3797214
  11. Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, et al. 2017. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/ Cas9 system. Microb. Cell Fact. 16: 201. https://doi.org/10.1186/s12934-017-0814-6
  12. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964. https://doi.org/10.1126/science.1159689
  13. Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843-1845. https://doi.org/10.1126/science.1165771
  14. Cameron Coates R, Blaskowski S, Szyjka S, van Rossum HM, Vallandingham J, Patel K, et al. 2019. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474. J. Ind. Microbiol. Biotechnol. 46: 187-201. https://doi.org/10.1007/s10295-018-2112-7
  15. Maizels N, Davis L. 2018. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. 46: 6962-6973. https://doi.org/10.1093/nar/gky588
  16. Zerbini F, Zanella I, Fraccascia D, Konig E, Irene C, Frattini LF, et al. 2017. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb. Cell Fact. 16: 68. https://doi.org/10.1186/s12934-017-0681-1
  17. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 15179. https://doi.org/10.1038/ncomms15179
  18. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109: E2579-2586. https://doi.org/10.1073/pnas.1109397109
  19. Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, et al. 2017. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42: 157-167. https://doi.org/10.1016/j.ymben.2017.06.010
  20. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
  21. Wright AV, Nunez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164: 29-44. https://doi.org/10.1016/j.cell.2015.12.035
  22. Komor AC, Badran AH, Liu DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168: 20-36. https://doi.org/10.1016/j.cell.2016.10.044
  23. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. 2013. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 41: 6360-6369. https://doi.org/10.1093/nar/gkt312
  24. Krumbach K, Sonntag CK, Eggeling L, Marienhagen J. 2019. CRISPR/Cas12a Mediated genome editing to introduce amino acid substitutions into the mechanosensitive channel MscCG of Corynebacterium glutamicum. ACS Synth. Biol. 8: 2726-2734. https://doi.org/10.1021/acssynbio.9b00361
  25. Lee HJ, Kim HJ, Lee SJ. 2020. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 30: 768-775. https://doi.org/10.1101/gr.257493.119
  26. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  27. Park S-D, Lee S-N, Park I-H, Choi J-S, Jeong W-K, Kim Y, et al. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotehcnol. 14: 789-795.
  28. Heider SA, Peters-Wendisch P, Wendisch VF. 2012. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol. 12: 198. https://doi.org/10.1186/1471-2180-12-198
  29. Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Z, et al. 2015. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211: 56-65. https://doi.org/10.1016/j.jbiotec.2015.06.427
  30. Shen J, Chen J, Jensen PR, Solem C. 2017. A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries. Appl. Microbiol. Biotechnol. 101: 4737-4746. https://doi.org/10.1007/s00253-017-8222-8
  31. Zhang J, Yang F, Yang Y, Jiang Y, Huo YX. 2019. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb. Cell Fact. 18: 60. https://doi.org/10.1186/s12934-019-1109-x
  32. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, et al. 2003. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 13: 1572-1579. https://doi.org/10.1101/gr.1285603
  33. Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y. 2017. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb. Cell Fact. 16: 205. https://doi.org/10.1186/s12934-017-0815-5
  34. Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, et al. 2018. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb. Cell Fact. 17: 63. https://doi.org/10.1186/s12934-018-0910-2
  35. Tung QN, Loi VV, Busche T, Nerlich A, Mieth M, Milse J, et al. 2019. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum. Redox Biol. 20: 514-525. https://doi.org/10.1016/j.redox.2018.11.012
  36. Santamaria R, Gil JA, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and transformation system in Brevibacterium lactofermentum. Microbiology 130: 2237-2246. https://doi.org/10.1099/00221287-130-9-2237
  37. Huang Y, Li L, Xie S, Zhao N, Han S, Lin Y, et al. 2017. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci. Rep. 7: 7916. https://doi.org/10.1038/s41598-017-08352-9
  38. Ronda C, Pedersen LE, Sommer MO, Nielsen AT. 2016. CRMAGE: CRISPR Optimized MAGE Recombineering. Sci. Rep. 6: 19452. https://doi.org/10.1038/srep19452
  39. Fu BX, St Onge RP, Fire AZ, Smith JD. 2016. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo. Nucleic Acids Res. 44: 5365-5377. https://doi.org/10.1093/nar/gkw417
  40. Zheng T, Hou Y, Zhang P, Zhang Z, Xu Y, Zhang L, et al. 2017. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci. Rep. 7: 40638. https://doi.org/10.1038/srep40638

Cited by

  1. Optimizing recombineering in Corynebacterium glutamicum vol.118, pp.6, 2020, https://doi.org/10.1002/bit.27737
  2. Mismatch Intolerance of 5′-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing vol.22, pp.12, 2020, https://doi.org/10.3390/ijms22126457
  3. Advances in Accurate Microbial Genome-Editing CRISPR Technologies vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2106.06056