DOI QR코드

DOI QR Code

Non-isolated input-series-output-parallel three-level buck converter

  • Chen, Jianfei (Department of Electrical and Computer Engineering, Wayne State University) ;
  • Duan, Chen (Department of Electrical and Computer Engineering, Wayne State University) ;
  • Wang, Caisheng (Department of Electrical and Computer Engineering, Wayne State University)
  • Received : 2018.03.25
  • Accepted : 2019.07.18
  • Published : 2020.01.20

Abstract

This paper proposes a non-isolated input-series-output-parallel (ISOP) three-level buck converter. A theoretical analysis indicates that it has a large step-down ratio and low component voltage stress with the input and output terminals sharing the same ground. An automatic current-balancing mechanism is revealed, and it indicates that the parasitic parameters and inductance variations influence the automatic current-balancing effect. Thus, current-balance control is necessary. Considering that the proposed topology has an ISOP configuration, two voltage-balance control strategies are proposed to realize input capacitor voltage balancing and output inductor current balancing. One is implemented based on a two-loop configuration with an output voltage loop and a voltage-balance loop. The other is developed based on a three-loop configuration by adding one inner current loop on the two-loop configuration. Finally, experimental results have been given to verify both the proposed converter and voltage-balance control.

Keywords

References

  1. Do, D., Cha, H., Nguyen, B., Kim, H.: Two-channel interleaved buck LED driver using current-balancing capacitor. IEEE J. Emerg. Sel. Top. Power Electron. 6(3), 1306-1313 (2018) https://doi.org/10.1109/JESTPE.2018.2845858
  2. Zhang, L., Chakraborty, S.: An interleaved series-capacitor tapped buck converter for high step-down DC/DC application. IEEE Trans. Power Electron. 34(7), 6565-6574 (2019) https://doi.org/10.1109/tpel.2018.2877309
  3. Liu, Y., Li, J., Chee, S., Macairan, M.: Hybrid converter simplifies 48V/54V step-down conversion in data centers and telecom systems, pp. 1-6, Analog devices. https://www.analog.com/media/en/reference-design-documentation/design-notes/Hybrid-Converter-Simplifies-48-V-54-V-Step-Down-Conversion-in-Data-Centers-and-Telecom-Systems.pdf
  4. Zhang, Y., Gao, Y., Zhou, L., Sumner, M.: A switched-capacitor bidirectional DC-DC converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 33(11), 9459-9469 (2018) https://doi.org/10.1109/tpel.2017.2788436
  5. Dusmez, S., Hasanzadeh, A., Khaligh, A.: Comparative analysis of bidirectional three-level DC-DC converter for automotive applications. IEEE Trans. Ind. Electron. 62(5), 3305-3315 (2015) https://doi.org/10.1109/TIE.2014.2336605
  6. Shi, H., Wang, K., Xiao, X., Sun, K.: Capacitor voltage balancing of a three-level bi-directional buck-boost converter for battery energy storage system. In: 2014 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 325-329 (2014)
  7. Rivera, S., Wu, B.: Electric vehicle charging station with an energy storage stage for split-DC bus voltage balancing. IEEE Trans. Power Electron. 32(3), 2376-2386 (2017) https://doi.org/10.1109/TPEL.2016.2568039
  8. Li, X., Zhang, W., Li, H., Xie, R., Xu, D.: Design and control of bi-directional DC/DC converter for 30 kW fuel cell power system. In: 8th International Conference on Power Electronics-ECCE Asia, pp. 1024-1030 (2011)
  9. Tan, L., Zhu, N., Wu, B.: An integrated inductor for eliminating circulating current of parallel three-level DC-DC converter-based EV fast charger. IEEE Trans. Ind. Electron. 63(3), 1362-1371 (2016) https://doi.org/10.1109/TIE.2015.2496904
  10. Zhang, X., Gong, C., Yao, Z.: Three-level DC converter for balancing DC 800 V voltage. IEEE Trans. Power Electron. 30(7), 3499-3507 (2015) https://doi.org/10.1109/TPEL.2014.2344016
  11. Jin, K., Ruan, X., Yang, M., Xu, M.: A hybrid fuel cell power system. IEEE Trans. Ind. Electron. 56(4), 1212-1222 (2009) https://doi.org/10.1109/TIE.2008.2008336
  12. Jin, K., Yang, M., Ruan, X., Xu, M.: Three-level bidirectional converter for fuel-cell/battery hybrid power system. IEEE Trans. Ind. Electron. 57(6), 1976-1986 (2010) https://doi.org/10.1109/TIE.2009.2031197
  13. Dusmez, S., Khaligh, A., Hasanzadeh, A.: A zero-voltage- transition bidirectional DC/DC converter. IEEE Trans. Ind. Electron. 62(5), 3152-3162 (2015) https://doi.org/10.1109/TIE.2015.2404825
  14. Ren, R., Liu, B., Jones, E.A., Wang, F.F., Zhang, Z., Costinett, D.: Capacitor-clamped, three-level GaN-based DC-DC converter with dual voltage outputs for battery charger applications. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 841-853 (2016) https://doi.org/10.1109/JESTPE.2016.2586890
  15. Shi, L., Baddipadiga, B.P., Ferdowsi, M., Crow, M.L.: Improving the dynamic response of a flying-capacitor three-level buck converter. IEEE Trans. Power Electron. 28(5), 2356-2365 (2013) https://doi.org/10.1109/TPEL.2012.2216291
  16. Yousefzadeh, V., Alarcon, E., Maksimovic, D.: Three-level buck converter for envelope tracking applications. IEEE Trans. Power Electron. 21(2), 549-552 (2006) https://doi.org/10.1109/TPEL.2005.869728
  17. Carstensen, C., Biela, J.: A Three-level buck converter with a wide voltage operation range for hardware-in-the-loop test systems. IEEE Trans. Power Electron. 31(9), 6176-6191 (2016) https://doi.org/10.1109/TPEL.2015.2504402
  18. Zhong, Z., Chen, Y., Zhang, P., Kang, Y.: A cost-effective circuit for three-level flying-capacitor buck converter combining the soft-start, flying capacitor pre-charging and snubber functions. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3658-3663 (2014)
  19. Zhou, X., Xu, P., Lee, F.C.: A novel current-sharing control technique for low-voltage high-current voltage regulator module applications. IEEE Trans. Power Electron. 15(6), 1153-1162 (2000) https://doi.org/10.1109/63.892830
  20. Xue, J., Lee, H.: A 2 MHz 12-100 V 90% efficiency self-balancing ZVS reconfigurable three-level DC-DC regulator with constant-frequency adaptive-on-time V2 control and nanosecond-scale ZVS turn-on delay. IEEE J. Solid-State Circuits 51(12), 2854-2866 (2016) https://doi.org/10.1109/JSSC.2016.2606581
  21. Liu, X., Mok, P.K.T., Jiang, J., Ki, W.-H.: Analysis and design considerations of integrated 3-level buck converters. IEEE Trans. Circuits Syst. Regul. Pap. 63(5), 671-682 (2016) https://doi.org/10.1109/TCSI.2016.2556098
  22. Liu, T., et al.: A novel asymmetrical three-level buck (ATL BUCK) converter for point-of-load (POL) application. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5096-5101 (2015)
  23. Reusch, D., Lee, F.C., Xu, M.: Three level buck converter with control and soft startup. In: 2009 IEEE Energy Conversion Congress and Exposition, pp. 31-35 (2009)
  24. Jang, Y., Jovanovic, M.M., Panov, Y.: Multi-phase buck converters with extended duty cycle. In: 21st Annual IEEE Applied Power Electronics Conference and Exposition, pp. 38-44 (2006)
  25. Shenoy, P.S., Amaro, M., Morroni, J., Freeman, D.: Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators. IEEE Trans. Power Electron. 31(10), 7006-7015 (2016) https://doi.org/10.1109/TPEL.2015.2508018
  26. Shenoy, P.S.: Introduction to the series capacitor buck converter. Application Report, Texa Instruments (2016)
  27. Sha, D., Guo, Z., Liao, X.: Cross-feedback output-current-sharing control for input-series-output-parallel modular DC-DC converters. IEEE Trans. Power Electron. 25(11), 2762-2771 (2010) https://doi.org/10.1109/TPEL.2010.2049504
  28. Xu, G., Sha, D., Liao, X.: Decentralized inverse-droop control for input-series-output-parallel DC-DC converters. IEEE Trans. Power Electron. 30(9), 4621-4625 (2015) https://doi.org/10.1109/TPEL.2015.2396898
  29. Sun, J., Qiu, Y., Xu, M., Lee, F.C.: High-frequency dynamic current sharing analyses for multiphase buck VRs. IEEE Trans. Power Electron. 22(6), 2424-2431 (2007) https://doi.org/10.1109/TPEL.2007.909303
  30. Chen, J., Wang, C., Li, J., Jiang, C., Duan, C.: A nonisolated three-level bidirectional DC-DC converter. IEEE Appl. Power Electron. Conf. Expo. 2018, 1566-1570 (2018)
  31. Ruan, X., Chen, W., Cheng, L., Chi, K.T., Yan, H., Zhang, T.: Control strategy for input-series-output-parallel converters. IEEE Trans. Ind. Electron. 56(4), 1174-1185 (2009) https://doi.org/10.1109/TIE.2008.2007980