DOI QR코드

DOI QR Code

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics

고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구

  • Hong, Ter-Ki (Dept. of Mechanical System & Automotive Engineering Graduate School of Chosun University) ;
  • Seo, Dong-Pyo (Dept. of Automation System, Korea, Suncheon Campus of Polytechnic University) ;
  • Park, Seul-Hyun (School of Mechanical System & Automotive Engineering, Chosun University)
  • 홍터기 (조선대학교 대학원 기계시스템.미래자동차공학과 대학원) ;
  • 서동표 (한국폴리텍대학 순천캠퍼스 자동화시스템과) ;
  • 박설현 (조선대학교 기계시스템.미래자동차공학부)
  • Received : 2020.04.02
  • Accepted : 2020.04.14
  • Published : 2020.06.30

Abstract

In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.

고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향을 고찰해보기 위해 ISO 5660-1 콘 칼로리미터 실험을 수행하였다. 고체 가연물로는 연소반응 중 Char를 발생시키지 않는 Polymethyl methacrylate (PMMA)를 선정하였고 열침투깊이를 계산하여 PMMA의 열적 두께를 구분하였다. 콘 칼로리미터의 덕트 유동을 12, 24, 40 L/s로 설정하여 가연물 주위에 강제 유동을 발생시킨 뒤 PMMA의 연소 시 측정된 열방출률을 측정함으로써 열분해 특성을 분석하였다. 열적으로 얇은 가연물의 열방출률은 주위의 유동 변화에 크게 영향을 받지 않았지만, 열적으로 두꺼운 가연물은 유량의 변화에 따라 열방출률이 크게 영향 받는 것을 확인하였다.

Keywords

References

  1. P. J. DiNenno, D. Drysdale, C. L. Beyler, W. D. Walton, L. P. Richard, J. R. Hall and J. M. Watts, "SFPE Hand Book of Fire Protection Engineering (Third Edition)", National Fire Protection Association, Society of Fire Protection Engineers (2002).
  2. V. Babrauskas, "Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science", Fire Science Publishers (2003).
  3. A. P. Mouritz and A. G. Gibson, "Fire Reaction Properties of Composites, Fire Properties of Polymer Composite Materials", Springer, pp. 59-101 (2006).
  4. E. Mikkola and I. S. Wichman, "On the Thermal Ignition of Combustible Materials", Fire and Materials, Vol. 14, pp. 87-96 (1989). https://doi.org/10.1002/fam.810140303
  5. L. Shi and M. Y. L. Chew, "Fire Behaviors of Polymers under Autoignition Conditions in a Cone Calorimeter", Fire Safety Journal, Vol. 61, pp. 243-253 (2013). https://doi.org/10.1016/j.firesaf.2013.09.021
  6. R. E. Lyon and M. L. Janssens, "Polymer Flammability", National Technical Information Service (2005).
  7. T. K Hong, M. H. Ryu, J. W. Lee and S. H. Park, "Effects of Char Produced from Burning Wood Combustible on Thermal Pyrolysis", Fire Science and Engineering, Vol. 33, No. 5, pp. 7-12 (2019). https://doi.org/10.7731/KIFSE.2019.33.5.007
  8. J. Luche, T. Rogaume, F. Richard and E. Guillaume, "Characterization of Thermal Properties and Analysis of Combustion Behavior of PMMA in a Cone Calorimeter", Fire Safety Journal, Vol. 46, pp. 451-461 (2011). https://doi.org/10.1016/j.firesaf.2011.07.005
  9. K. T. Korver, "A Generalized Model for Wall Flame Heat Flux During Upward Flame Spread on Polymers", Masters Thesis, Department of Fire Protection Engineering, University of Maryland (2015).
  10. C. Huggett, "Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements", Fire and Materials, Vol. 4, pp. 61-65 (1980). https://doi.org/10.1002/fam.810040202
  11. P. Bbeever, "SFPE Handbook of Fire Protection Engineering, 2nd ed: Self-Heating and Spontaneous Combustion", National Fire Protection Association (1995).
  12. M. T. Gratkowski, N. A. Deembsey and C. L. Beyler, "Radiant Smoldering Ignition of Plywood", Fire Safety Journal, Vol. 41, pp. 427-443 (2006). https://doi.org/10.1016/j.firesaf.2006.03.006
  13. A. Atreya, "The SFPE Handbook of Fire Protection Engineering. 3rd ed: Convection Heat Transfer", National Fire Protection Association (2002).