DOI QR코드

DOI QR Code

Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites

  • Fattahi, A.M. (Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University) ;
  • Safaei, Babak (Department of Mechanical Engineering, Eastern Mediterranean University) ;
  • Qin, Zhaoye (Department of Mechanical Engineering, Tsinghua University) ;
  • Chu, Fulei (Department of Mechanical Engineering, Tsinghua University)
  • Received : 2020.02.27
  • Accepted : 2021.01.16
  • Published : 2021.01.25

Abstract

The effect of nanoparticle volume fraction on the elastic properties of a polymer-based nanocomposite was experimentally investigated and the obtained results were compared with various existing theoretical models. The nanocomposite was consisted of high density polyethylene (HDPE) as polymeric matrix and 0, 0.5, 1 and 1.5 wt.% multi walled carbon nanotubes (MWCNTs) prepared using twin screw extruder and injection molding technique. Nanocomposite samples were molded in injection apparatus according to ASTM-D638 standard. Therefore, in addition to morphological investigations of the samples, tensile tests at ambient temperature were performed on each sample and stress-strain plots, elastic moduli, Poisson's ratios, and strain energies of volume units were extracted from primary strain test results. Tensile test results demonstrated that 1 wt.% nanoparticles presented the best reinforcement behavior in HDPE-MWCNT nanocomposites. Due to the agglomeration of nanoparticles at above 1 wt.%, Young's modulus, yielding stress, fracture stress, and fracture energy were decreased and Poisson's ratio and failure strain were increased.

Keywords

Acknowledgement

The work described in this paper was supported by National Natural Science Foundation of China (Grant no. 11972204). The authors are grateful for their supports.

References

  1. Alemi, Parvin, S., Ahmed, N.A. and Fattahi, A.M. (2020), "Numerical prediction of elastic properties for carbon nanotubes reinforced composites using a multi-scale method", Eng. Comput., DOI: 10.1007/s00366-019-00925-8.
  2. Aly, A.A., et al. (2012), "Friction and Wear of Polymer Composites Filled by Nano-Particles: A Review", World J. Nano Sci. Eng., 02(1), 32-39. DOI: 10.4236/wjnse.2012.21006.
  3. Arash, B., Wang, Q. and Varadan, V.K. (2014), "Mechanical properties of carbon nanotube/polymer composites", Sci. Rep., 4(6479), 1-8. DOI: 10.1038/srep06479.
  4. Azizi, S., et al. (2015), "Nonlinear vibrational analysis of nanobeams embedded in an elastic medium including surface stress effects", Adv. Mater. Sci. Eng., 2015: 1-7. DOI: 10.1155/2015/318539.
  5. Babaei, A., Noorani, M.R.S. and Ghanbari, A. (2017), "Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory", Microsyst. Technol., 23, 4599-4610. DOI: 10.1007/s00542-017-3285-0
  6. Babaei, A. and Yang, C.X. (2019), "Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field", Microsyst. Technol., 25, 1077-1085. DOI:10.1007/s00542-018-4047-3
  7. Barai, P. and Weng, G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composites", Int. J. Plast., 27(4), 539-559. DOI: 10.1016/j.ijplas.2010.08.006.
  8. Bhattacharya, S.N., Kamal, M.R. and Gupta, R.K. (2008), "Polymeric Nanocomposites: Theory and Practice", Carl Hanser Publishers, Cincinnati, Ohio, Munich. DOI: 10.3139/9783446418523.
  9. Carey, H., Schulz, E.F. and Dienes, G.J. (1950), "Mechanical Properties of Polyethylene", Ind. Eng. Chem., 42(5), 842-847. DOI: 10.1021/ie50485a027.
  10. Crawfond, R.J. (1998), "Plastics Engineering, 3rd edition", Butterworth-Heinemann, Oxford, United Kingdom.
  11. Fan, F., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation", Compos. Struct., 255, 112969. DOI: 10.1016/j.compstruct.2020.112969.
  12. Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23(10), 5079-5091. DOI: 10.1007/s00542-017-3345-5.
  13. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. DOI: 10.1140/epjp/i2019-12912-7.
  14. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  15. Fidelus, J.D., et al. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A Appl. Sci. Manuf., 36(11), 1555-1561. DOI: 10.1016/j.compositesa.2005.02.006.
  16. Galgali, G., Agarwal, S. and Lele, A. (2004), "Effect of clay orientation on the tensile modulus of polypropylene-nanoclay composites", Polymer., 45(17), 6059-6069. DOI: 10.1016/j.polymer.2004.06.027.
  17. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. DOI: 10.1007/s12648-018-1254-9.
  18. Gojny, F.H., et al. (2004), "Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. DOI: 10.1016/j.compscitech.2004.04.002.
  19. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Method. Appl. M., 193(17-20), 1773-1788. DOI: 10.1016/j.cma.2003.12.025.
  20. Joshi, P. and Upadhyay, S.H. (2014), "Evaluation of elastic properties of multi walled carbon nanotube reinforced composite", Comput. Mater. Sci., 81, 332-338. DOI: 10.1016/j.commatsci.2013.08.034.
  21. Kemal, I., et al. (2009), "Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate", Polymer., 50(16), 4066-4079. DOI: 10.1016/j.polymer.2009.06.028.
  22. Kim, H.G. and Kwac, L.K. (2009), "Evaluation of elastic modulus for unidirectionally aligned short fiber composites", J. Mech. Sci. Technol., 23(1), 54-63. DOI: 10.1007/s12206-008-0810-1.
  23. Kirupasankar, S., Gurunathan, C. and Gnanamoorthy, R. (2012), "Transmission efficiency of polyamide nanocomposite spur gears", Mater. Des., 39, 338-343. DOI: 10.1016/j.matdes.2012.02.045.
  24. Kong, X., Chakravarthula, S.S. and Qiao, Y. (2006), "Evolution of collective damage in a polyamide 6-silicate nanocomposite", Int. J. Solids Struct., 43(20), 5969-5980. DOI: 10.1016/j.ijsolstr.2005.07.019.
  25. Manera, M. (1977), "Elastic Properties of Randomly Oriented Short Fiber-Glass Composites", J. Compos. Mater., 11(2), 235-247. DOI: 10.1177/002199837701100208.
  26. Mohd Ishak, Z., Chow, W. and Takeichi, T. (2008), "Effect of Organoclay Modification on the Mechanical, Morphology, and Thermal Properties of Injection Molded Polyamide 6 / Polypropylene / Montmorillonite Nanocomposites" In: Proceedings of the Polymer Processing Society 24th Annual Meeting, Salerno, Italy, June 15-19.
  27. Moradi-Dastjerdi, R. and Behdinan, K. (2020), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers", Int. J. Mech. Sci., 167, 105283. DOI: 10.1016/j.ijmecsci.2019.105283.
  28. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments", Aerosp. Sci. Technol., 110, 106476. DOI: 10.1016/j.ast.2020.106476
  29. Najipour, A. and Fattahi, A.M. (2017), "Experimental study on mechanical properties of PE/CNT composites", J. Theor. Appl. Mech., 55(2), 719-726. DOI: 10.15632/jtam-pl.55.2.719.
  30. Pan, N. (1996), "The elastic constants of randomly oriented fiber composites: a new approach to prediction", Sci. Eng. Compos. Mater., 5(2), 63-72. DOI: 10.1515/secm.1996.5.2.63.
  31. Qian, D., Dickey, E., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76, 2868-2870. DOI: 10.1063/1.126500
  32. Qin, Z., zhao, S., pang, X., Safaei, B. and Chu, F. (2019), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. DOI: 10.1016/j.ijmecsci.2019.105341.
  33. Qin, Z., et al. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. DOI: 10.1016/j.compstruct.2019.04.046.
  34. Sahmani, S. and Safaei, B. (2020), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Model., 89, 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039.
  35. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35, 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  36. Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mechanics, 23(5), 678-687. DOI: 10.5755/j01.mech.23.5.14883.
  37. Safaei, B., et al. (2019), "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. DOI: 10.1016/j.ast.2019.05.020.
  38. Safaei, B., et al. (2019), "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. DOI: 10.1016/j.ast.2019.05.020.
  39. Safaei, B., et al. (2019), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 1-22. DOI: 10.1177/1099636219848282.
  40. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  41. Safaei, B., et al. (2021) "Calcium carbonate nanoparticles effects on cement plast properties", Microsyst Technol., DOI: 10.1007/s00542-020-05136-6.
  42. Safaei, M., et al. (2015), "An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites", Comput. Mater. Sci., 96(PA), 191-199. DOI: 10.1016/j.commatsci.2014.08.036.
  43. Sharma, S.K. and Nayak, S.K. (2009), "Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties", Polym. Degrad. Stab., 94(1), 132-138. DOI: 10.1016/j.polymdegradstab.2008.09.004.
  44. Srinath, G. and Gnanamoorthy, R. (2005), "Effect of nanoclay reinforcement on tensile and tribo behaviour of Nylon 6", J. Mater. Sci., 40(11), 2897-2901. DOI: 10.1007/s10853-005-2439-0.
  45. Srinath, G. and Gnanamoorthy, R. (2007), "Sliding wear performance of polyamide 6-clay nanocomposites in water", Compos. Sci. Technol., 67(3-4), 399-405. DOI: 10.1016/j.compscitech.2006.09.004.
  46. Strong, A.B. (2006), "Plastics: Materials and Processig, Third Edition", Pearson, London, United Kingdom.
  47. Tan, H., et al. (2007), "The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials", Compos. Sci. Technol., 67(14), 2941-2946. DOI: 10.1016/j.compscitech.2007.05.016.
  48. Tebeta, R.T., Fattahi, A.M. and Ahmed, N.A. (2020), "Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect", Microsyst Technol., 26, 2423-2441. DOI: 10.1007/s00542-020-04784-y.
  49. Tebeta, R.T., Ahmed, N.A. and Fattahi, A.M. (2021), "Experimental study on the effect of compression load on the elastic properties of HDPE/SWCNTs nanocomposites", Microsyst Technol., DOI: 10.1007/s00542-020-05098-9.
  50. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. DOI: 10.1016/S0266-3538(01)00094-X.
  51. Tsai, S.W., Halpin, J.C. and Pagano, N.J. (1968), Composite Materials Workshop., Stamford, Conn., Technomic Pub. Co.
  52. Yang, Z., Feng, C., Yang, J., Wang, Y., Lv, J., Liu, A. and Fu, J. (2020a) "Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints", Aerosp. Sci. Technol., 107, 106326. DOI: 10.1016/j.ast.2020.106326.
  53. Yang, Z., Tam, M., Zhang, Y., Kitipornchai, S., Lv, J. and Yang, J. (2020b), "Nonlinear Dynamic Response of FG Graphene Platelets Reinforced Composite Beam with Edge Cracks in Thermal Environment", Int. J. Struct. Stab. Dyn., 2043005. DOI: 10.1142/s0219455420430051.
  54. Yang, Z., Zhao, S., Yang, J., Lv, J., Liu, A. and Fu, J. (2020c), "In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements", Mech. Adv. Mater. Struct., 1-11. DOI: 10.1080/15376494.2020.1716420.
  55. Wu, C.L., et al. (2002), "Tensile performance improvement of low nanoparticles filled-polypropylene composites", Compos. Sci. Technol., 62(10-11), 1327-1340. DOI: 10.1016/S0266-3538(02)00079-9.
  56. Zare, Y. (2015), "Modeling of tensile modulus in polymer/carbon nanotubes (CNT) nanocomposites", Synth. Met., 202, 68-72. DOI: 10.1016/j.synthmet.2015.02.002.
  57. Zhu, J., et al. (2004), "Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes", Adv. Funct. Mater., 14(7), 643-648. DOI: 10.1002/adfm.200305162.

Cited by

  1. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces vol.136, pp.6, 2021, https://doi.org/10.1140/epjp/s13360-021-01632-4
  2. Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216594