DOI QR코드

DOI QR Code

Rheological Characterization of the Dispersibility of Graphene Nanoparticles in Polymer Nanocomposites

고분자 나노복합소재 내의 그래핀 나노입자 분산성에 대한 유변학적 평가

  • Ha, Jinsu (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Song, Yeeun (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Joo, Yangyul (Department of Polymer Science and Engineering, Chonnam National University) ;
  • Huang, Zheng Min (Department of Fiber System Engineering, Dankook University) ;
  • Yun, Ji Sun (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Doojin (Department of Polymer Science and Engineering, Chonnam National University)
  • 하진수 (전남대학교 고분자융합소재공학부) ;
  • 송예은 (전남대학교 고분자융합소재공학부) ;
  • 주양율 (전남대학교 고분자융합소재공학부) ;
  • 황정민 (단국대학교 파이버시스템공학과) ;
  • 윤지선 (한국세라믹기술원 에너지저장소재센터) ;
  • 이두진 (전남대학교 고분자융합소재공학부)
  • Received : 2021.01.11
  • Accepted : 2021.01.25
  • Published : 2021.02.28

Abstract

The dispersibility of nanoparticles in polymer nanocomposites significantly affects the mechanical, thermal, and electrical properties of the final products. The objective of this study is to quantify the dispersibility of nanoparticles in polymer nanocomposites. Various amounts of graphene nanoparticles were introduced in polypropylene-based and polylactic acid-based resins through melt compounding. They were then injection-molded to fabricate disc-type specimens for characterizing the rheological properties of the nanocomposites. To evaluate the dispersibility of the nanoparticles in the composites, the associated storage (G') and loss (G") moduli were analyzed for plotting the G'-G" slopes. Furthermore, the Van Gurp-Palmen plot was employed for analyzing the increase in material elasticity with respect to the base resins and nanoparticle compositions.

Keywords

Acknowledgement

이 논문은 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(No. 20011779).

References

  1. H. Chang and H. Wu, "Graphene-based Nanocomposites: Preparation, Functionalization, and Energy and Environmental Applications", Energy Environ. Sci., 2013, 6, 3483-3507. https://doi.org/10.1039/c3ee42518e
  2. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk, "Experimental Trends in Polymer Nanocomposites-a Review", Mater. Sci. Eng.: A, 2005, 393, 1-11. https://doi.org/10.1016/j.msea.2004.09.044
  3. J. Gu, N. Li, L. Tian, Z. Lv, and Q. Zhang, "High Thermal Conductivity Graphite Nanoplatelet/UHMWPE Nanocomposites", Rsc Adv., 2015, 5, 36334-36339. https://doi.org/10.1039/C5RA03284A
  4. Y. Ju, J. Ha, Y. Song, J. S. Yun, and D. Lee, "Optimizing the Printability and Dispersibility of Functionalized Zirconium Oxide/acrylate Composites with Various Nano-to Microparticle Ratios", Ceram. Int., 2020, 46, 26903-26910. https://doi.org/10.1016/j.ceramint.2020.07.168
  5. S. Y. Fu, Z. K. Chen, S. Hong, and C. C. Han, "The Reduction of Carbon Nanotube (CNT) Length during the Manufacture of CNT/polymer Composites and a Method to Simultaneously Determine the Resulting CNT and Interfacial Strengths", Carbon, 2009, 47, 3192-3200. https://doi.org/10.1016/j.carbon.2009.07.028
  6. Q. Zhang, F. Fang, X. Zhao, Y. Li, M. Zhu, and D. Chen, "Use of Dynamic Rheological Behavior to Estimate the Dispersion of Carbon Nanotubes in Carbon Nanotube/polymer Composites", The J. Phys. Chem. B, 2008, 112, 12606-12611. https://doi.org/10.1021/jp802708j
  7. M. Kim, H. Y. Song, W. J. Choi, and K. Hyun, "Evaluation of the Degree of Dispersion of Polymer Nanocomposites (PNCs) Using Nonlinear Rheological Properties by FT-rheology", Macromolecules, 2019, 52, 8604-8616. https://doi.org/10.1021/acs.macromol.9b01302
  8. Y. Y. Kim, B. Y. Lee, J. S. Kim, and J. K. Kim, "Quantitative Evaluation of Fiber Dispersion of the Fiber-reinforced Cement Composites Using an Image Processing Technique", J. Korean Soc. Nondestruct. Test., 2007, 27, 148-156.
  9. Z. Li, Y. Gao, K. S. Moon, Y. Yao, A. Tannenbaum, and C. P. Wong, "Automatic Quantification of Filler Dispersion in Polymer Composites", Polymer, 2012, 53, 1571-1580. https://doi.org/10.1016/j.polymer.2012.01.048
  10. J. Cho, H. Lee, K. H. Nam, H. Yeo, C. M. Yang, D. G. Seong, D. Lee, and S. Y. Kim, "Enhanced Electrical Conductivity of Polymer Nanocomposite Based on Edge-selectively Functionalized Graphene Nanoplatelets", Compos. Sci. Technol., 2020, 189, 108001. https://doi.org/10.1016/j.compscitech.2020.108001
  11. S. B. Lee, B. H. Jeong, J. W. Yi, W. O. Lee, and M. K. Um, "Quantitative Dispersion Evaluation of Carbon Nanotubes Reinforced Polymer Nano-composites", Polym. Korea, 2011, 35, 60-65. https://doi.org/10.7317/pk.2011.35.1.60
  12. J. H. Kim, D. J. Kwon, P. S. Shin, Y. M. Baek, H. S. Park, K. L. DeVries, and J. M. Park, "New Evaluation of Interfacial Properties and Damage Sensing in CFRC by VARTM Using 3D ER Mapping", Compos. Part B: Eng., 2018, 155, 178-186. https://doi.org/10.1016/j.compositesb.2018.08.010
  13. S. Lee, M. Kim, H. Y. Song, and K. Hyun, "Characterization of the Effect of Clay on Morphological Evaluations of PLA/Biodegradable Polymer Blends by FT-Rheology", Macromolecules, 2019, 52, 7904-7919. https://doi.org/10.1021/acs.macromol.9b00800
  14. H. Y. Song and K. Hyun, "Decomposition of Q0 from FT-rheology into Elastic and Viscous Parts: Intrinsic-nonlinear Master Curves for Polymer Solutions", J. Rheol., 2018, 62, 919-939. https://doi.org/10.1122/1.5024720
  15. Y. C. You and Y. C. Kim, "Study on the Talc Dispersion and Rheological Properties of PP/talc Compound", J. Korea Academia-Industrial Cooperation Soc., 2011, 12, 4261-4266. https://doi.org/10.5762/KAIS.2011.12.9.4261
  16. M. El Achaby, F. E. Arrakhiz, S. Vaudreuil, A. el Kacem Qaiss, M. Bousmina, and O. Fassi-Fehri, "Mechanical, Thermal, and Rheological Properties of Graphene‐based Polypropylene Nanocomposites Prepared by Melt Mixing", Polym. Compos., 2012, 33, 733-744. https://doi.org/10.1002/pc.22198