DOI QR코드

DOI QR Code

Frequency and thermal buckling information of laminated composite doubly curved open nanoshell

  • Dai, Humin (Department of Advanced Manufacture Technology, Guangdong Mechanical Electrical Polytechnic) ;
  • Safarpour, Hamed (Mechanical Engineering department, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2020.07.23
  • Accepted : 2020.10.15
  • Published : 2021.01.25

Abstract

In the present computational approach, thermal buckling and frequency characteristics of a doubly curved laminated nanopanel with the aid of Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) and Nonlocal Strain Gradient Theory (NSGT) are investigated. Additionally, the temperature changes along the thickness direction nonlinearly. The novelty of the current study is in considering the effects of laminated composite and thermal in addition of size effect on frequency, thermal buckling, and dynamic deflections of the laminated nanopanel. The acquired numerical and analytical results are compared by each other to validate the results. The results demonstrate that some geometrical and physical parameters, have noticeable effects on the frequency and pre-thermal buckling behavior of the doubly curved open cylindrical laminated nanopanel. The favorable suggestion of this survey is that for designing the laminated nano-sized structure should pay special attention to size-dependent parameters because nonlocal and length scale parameters have an important role in the static and dynamic behaviors of the laminated nanopanel.

Keywords

References

  1. Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., Int. J., 23(2), 141-153. https://doi.org/10.12989/sss.2019.23.2.141.
  2. Arefi, M. (2020), "Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis", Smart Struct. Syst., Int. J., 25(4), 471-486. https://doi.org/10.12989/sss.2020.25.4.471.
  3. Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. Part B Eng., 168, 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.
  4. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civ. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
  5. Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng. L, 2020, 1464420720928378. https://doi.org/10.1177/1464420720928378.
  6. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019a), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.
  7. Arefi, M., Kiani, M. and Rabczuk, T. (2019b), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  8. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020a), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Based Des. Struct. Mach., 2020, 1-29. https://doi.org/10.1080/15397734.2020.1777157.
  9. Arefi, M., Zamani, M. and Kiani, M. (2020b), "Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezomagneto-elasticity theory", J. Sandw. Struct. Mater., 22(3), 599-625. https://doi.org/10.1177/1099636218760667.
  10. Bagheri, H., Kiani, Y. and Eslami, M. (2019), "Asymmetric compressive stability of rotating annular plates", Eur. J. Comput. Mech., 2019, 1-21. https://doi.org/10.1080/17797179.2018.1560989.
  11. Bai, B., Li, H., Zhang, W. and Cui, Y. (2020), "Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk", J. Sound Vib., 472, 115210. https://doi.org/10.1016/j.jsv.2020.115210.
  12. Dai, T., Dai, H.L. and Lin, Z.Y. (2019), "Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment", Compos. Struct., 210, 641-656. https://doi.org/10.1016/j.compstruct.2018.11.077.
  13. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., Int. J., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  14. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. https://doi.org/10.12989/anr.2017.5.4.281.
  15. Ebrahimi, F. and Salari, E. (2019), "Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams", Adv. Nano Res., Int. J., 6(4), 377-397. https://doi.org/10.12989/anr.2018.6.4.377.
  16. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019a), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
  17. Ebrahimi, F., Karimiasl, M., Civalek, Ö . and Vinyas, M. (2019b), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077.
  18. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., Int. J., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.
  19. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
  20. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  21. Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., Int. J., 7(5), 311-324. https://doi.org/10.12989/anr.2019.7.5.311.
  22. Gholami, R. and Ansari, R. (2019), "On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable model", Iran. J. Sci. Technol. Trans. Mech. Eng., 43(1), 603-620. https://doi.org/10.1007/s40997-018-0182-9.
  23. Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Analytical investigation on free vibration frequencies of polymer nano composite plate: Effect of graphene grading and non-uniform edge loading", Mater. Today Commun., 24, 100910. https://doi.org/10.1016/j.mtcomm.2020.100910.
  24. Hu, Y. and Wang, T. (2016), "Nonlinear free vibration of a rotating circular plate under the static load in magnetic field", Nonlin. Dyn., 85(3), 1825-1835. https://doi.org/10.1007/s11071-016-2798-x.
  25. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  26. Javani, M., Kiani, Y. and Eslami, M. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin-Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  27. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  28. Karimiasl, M., Ebrahimi, F. and Vinyas, M. (2019), "Nonlinear vibration analysis of multiscale doubly curved piezoelectric composite shell in hygrothermal environment", J. Intell. Mater. Syst. Struct., 30(10), 1594-1609. https://doi.org/10.1177/1045389X19835956.
  29. Khosravi, F., Hosseini, S.A., Hamidi, B.A., Dimitri, R. and Tornabene, F. (2020), "Nonlocal torsional vibration of elliptical nanorods with different boundary conditions", Vibration, 3(3), 189-203. https://doi.org/10.3390/vibration3030015.
  30. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
  31. Liu, D., Li, Z., Kitipornchai, S. and Yang, J. (2019), "Threedimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates", Compos. Struct., 229, 111453. https://doi.org/10.1016/j.compstruct.2019.111453.
  32. Mahinzare, M., Ranjbarpur, H. and Ghadiri, M. (2018), "Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate", Mech. Syst. Signal Process., 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.
  33. Mahinzare, M., Alipour, M.J., Sadatsakkak, S.A. and Ghadiri, M. (2019), "A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate", Mech. Syst. Signal Process., 115, 323-337. https://doi.org/10.1016/j.ymssp.2018.05.043.
  34. Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001.
  35. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2019), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct Mater., 1099636219839302. https://doi.org/10.1177/1099636219839302.
  36. Mohseni, A. and Shakouri, M. (2020), "Natural frequency, damping and forced responses of sandwich plates with viscoelastic core and graphene nanoplatelets reinforced face sheets", J. Vib. Control, 1077546319893453. https://doi.org/10.1177/1077546319893453.
  37. Muc, A. (2011), "SHM of composite cylindrical multilayered shells with delaminations", Proceedings of the IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, Budapest, Hungary, June. https://doi.org/10.1007/978-94-007-1643-8_25.
  38. Muc, A. (2020), "Non-local approach to free vibrations and buckling problems for cylindrical nano-structures", Compos. Struct., 250, 112541. https://doi.org/10.1016/j.compstruct.2020.112541.
  39. Muc, A. and Chwal, M. (2011), "Vibration control of defects in carbon nanotubes", Proceedings of the IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, Budapest, Hungary, June. https://doi.org/10.1007/978-94-007-1643-8_27.
  40. Muc, A. and Ulatowska, A. (2012), "Local fibre reinforcement of holes in composite multilayered plates", Compos. Struct., 94(4), 1413-1419. https://doi.org/10.1016/j.compstruct.2011.11.017.
  41. Muc, A., Chwal, M. and Stawiarski, A. (2019), "Experimental and numerical analysis of heat convection in cylindrical composite structures with internal defects", Adv. Compos. Lett., 28, 0963693519879699. https://doi.org/10.1177/0963693519879699.
  42. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  43. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H. and Bordas, S.P. (2010), "An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes", J. Comput. Appl. Math., 233(9), 2112-2135. https://doi.org/10.1016/j.cam.2009.08.117.
  44. Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H. and Le-Van, C. (2013), "Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)", Int. J. Comput. Methods, 10(1), 1340008. https://doi.org/10.1142/S0219876213400082.
  45. Nguyen-Thoi, T., Rabczuk, T., Lam-Phat, T., Ho-Huu, V. and Phung-Van, P. (2014), "Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3)", Theor. Appl. Fracture Mech., 72, 150-163. https://doi.org/10.1016/j.tafmec.2014.02.004.
  46. Nguyen-Thoi, T., Rabczuk, T., Ho-Huu, V., Le-Anh, L., DangTrung, H. and Vo-Duy, T. (2017), "An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates", Int. J. Comput. Methods, 14(2), 1750011. https://doi.org/10.1142/S0219876217500116.
  47. Noroozi, A.R., Malekzadeh, P., Dimitri, R. and Tornabene, F. (2020), "Meshfree radial point interpolation method for the vibration and buckling analysis of FG-GPLRC perforated plates under an in-plane loading", Eng. Struct., 221, 111000. https://doi.org/10.1016/j.engstruct.2020.111000.
  48. Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.
  49. SafarPour, H., Hosseini, M. and Ghadiri, M. (2017), "Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: An exact solution", J. Therm. Stress., 40(11), 1353-1367. https://doi.org/10.1080/01495739.2017.1350827.
  50. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.
  51. Salari, F.E.E. (2016), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., Int. J., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197.
  52. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  53. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  54. Sofiyev, A.H., Mammadov, Z., Dimitri, R. and Tornabene, F. (2020), "Vibration analysis of shear deformable carbon nanotubes‐based functionally graded conical shells resting on elastic foundations", Math. Methods Appl. Sci., In Press. https://doi.org/10.1002/mma.6674
  55. Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlin. Dyn., 95(3), 2333-2352. https://doi.org/10.1007/s11071-018-4695-y.
  56. Thai, C.H., Ferreira, A., Tran, T. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.
  57. Thai, C.H., Nguyen‐Xuan, H., Nguyen‐Thanh, N., Le, T.H., Nguyen‐Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS‐based isogeometric approach", Int. J. Num. Methods Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282.
  58. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  59. Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.
  60. Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
  61. Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higherorder equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009.
  62. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
  63. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015a), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 020801. https://doi.org/10.1115/1.4028859.
  64. Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015b), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005.
  65. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  66. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
  67. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.
  68. Tran, T.T., Tran, V.K., Le, P.B., Phung, V.M., Do, V.T. and Nguyen, H.N. (2020), "Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method", Adv. Civ. Eng., 2020, 1471037. https://doi.org/10.1155/2020/1471037.
  69. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
  70. Viola, E. and Tornabene, F. (2009), "Free vibrations of three parameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587-594. https://doi.org/10.1016/j.mechrescom.2009.02.001.
  71. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories", Compos. Struct., 101, 59-93. https://doi.org/10.1016/j.compstruct.2013.01.002.
  72. Wang, Y., Zeng, R. and Safarpour, M. (2020), "Vibration analysis of FG-GPLRC annular plate in a thermal environment", Mech. Based Des. Struct. Mach., 2020, 1-19. https://doi.org/10.1080/15397734.2020.1719508.
  73. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  74. Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.
  75. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044.
  76. Zur, K.K., Arefi, M., Kim, J. and Reddy, J. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B Eng., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.

Cited by

  1. Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2021, https://doi.org/10.12989/cac.2021.27.4.369
  2. Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083